1 |
Interpreting embedding models of knowledge bases. / Interpretando modelos de embedding de bases de conhecimento.Arthur Colombini Gusmão 26 November 2018 (has links)
Knowledge bases are employed in a variety of applications, from natural language processing to semantic web search; alas, in practice, their usefulness is hurt by their incompleteness. To address this issue, several techniques aim at performing knowledge base completion, of which embedding models are efficient, attain state-of-the-art accuracy, and eliminate the need for feature engineering. However, embedding models predictions are notoriously hard to interpret. In this work, we propose model-agnostic methods that allow one to interpret embedding models by extracting weighted Horn rules from them. More specifically, we show how the so-called \"pedagogical techniques\", from the literature on neural networks, can be adapted to take into account the large-scale relational aspects of knowledge bases, and show experimentally their strengths and weaknesses. / Bases de conhecimento apresentam diversas aplicações, desde processamento de linguagem natural a pesquisa semântica da web; contudo, na prática, sua utilidade é prejudicada por não serem totalmente completas. Para solucionar esse problema, diversas técnicas focam em completar bases de conhecimento, das quais modelos de embedding são eficientes, atingem estado da arte em acurácia, e eliminam a necessidade de fazer-se engenharia de características dos dados de entrada. Entretanto, as predições dos modelos de embedding são notoriamente difíceis de serem interpretadas. Neste trabalho, propomos métodos agnósticos a modelo que permitem interpretar modelos de embedding através da extração de regras Horn ponderadas por pesos dos mesmos. Mais espeficicamente, mostramos como os chamados \"métodos pedagógicos\", da literatura de redes neurais, podem ser adaptados para lidar com os aspectos relacionais e de larga escala de bases de conhecimento, e mostramos experimentalmente seus pontos fortes e fracos.
|
2 |
Interpreting embedding models of knowledge bases. / Interpretando modelos de embedding de bases de conhecimento.Gusmão, Arthur Colombini 26 November 2018 (has links)
Knowledge bases are employed in a variety of applications, from natural language processing to semantic web search; alas, in practice, their usefulness is hurt by their incompleteness. To address this issue, several techniques aim at performing knowledge base completion, of which embedding models are efficient, attain state-of-the-art accuracy, and eliminate the need for feature engineering. However, embedding models predictions are notoriously hard to interpret. In this work, we propose model-agnostic methods that allow one to interpret embedding models by extracting weighted Horn rules from them. More specifically, we show how the so-called \"pedagogical techniques\", from the literature on neural networks, can be adapted to take into account the large-scale relational aspects of knowledge bases, and show experimentally their strengths and weaknesses. / Bases de conhecimento apresentam diversas aplicações, desde processamento de linguagem natural a pesquisa semântica da web; contudo, na prática, sua utilidade é prejudicada por não serem totalmente completas. Para solucionar esse problema, diversas técnicas focam em completar bases de conhecimento, das quais modelos de embedding são eficientes, atingem estado da arte em acurácia, e eliminam a necessidade de fazer-se engenharia de características dos dados de entrada. Entretanto, as predições dos modelos de embedding são notoriamente difíceis de serem interpretadas. Neste trabalho, propomos métodos agnósticos a modelo que permitem interpretar modelos de embedding através da extração de regras Horn ponderadas por pesos dos mesmos. Mais espeficicamente, mostramos como os chamados \"métodos pedagógicos\", da literatura de redes neurais, podem ser adaptados para lidar com os aspectos relacionais e de larga escala de bases de conhecimento, e mostramos experimentalmente seus pontos fortes e fracos.
|
3 |
Learning representations in multi-relational graphs : algorithms and applications / Apprentissage de représentations en données multi-relationnelles : algorithmes et applicationsGarcía Durán, Alberto 06 April 2016 (has links)
Internet offre une énorme quantité d’informations à portée de main et dans une telle variété de sujets, que tout le monde est en mesure d’accéder à une énorme variété de connaissances. Une telle grande quantité d’information pourrait apporter un saut en avant dans de nombreux domaines (moteurs de recherche, réponses aux questions, tâches NLP liées) si elle est bien utilisée. De cette façon, un enjeu crucial de la communauté d’intelligence artificielle a été de recueillir, d’organiser et de faire un usage intelligent de cette quantité croissante de connaissances disponibles. Heureusement, depuis un certain temps déjà des efforts importants ont été faits dans la collecte et l’organisation des connaissances, et beaucoup d’informations structurées peuvent être trouvées dans des dépôts appelés Bases des Connaissances (BCs). Freebase, Entity Graph Facebook ou Knowledge Graph de Google sont de bons exemples de BCs. Un grand problème des BCs c’est qu’ils sont loin d’êtres complets. Par exemple, dans Freebase seulement environ 30% des gens ont des informations sur leur nationalité. Cette thèse présente plusieurs méthodes pour ajouter de nouveaux liens entre les entités existantes de la BC basée sur l’apprentissage des représentations qui optimisent une fonction d’énergie définie. Ces modèles peuvent également être utilisés pour attribuer des probabilités à triples extraites du Web. On propose également une nouvelle application pour faire usage de cette information structurée pour générer des informations non structurées (spécifiquement des questions en langage naturel). On pense par rapport à ce problème comme un modèle de traduction automatique, où on n’a pas de langage correct comme entrée, mais un langage structuré. Nous adaptons le RNN codeur-décodeur à ces paramètres pour rendre possible cette traduction. / Internet provides a huge amount of information at hand in such a variety of topics, that now everyone is able to access to any kind of knowledge. Such a big quantity of information could bring a leap forward in many areas if used properly. This way, a crucial challenge of the Artificial Intelligence community has been to gather, organize and make intelligent use of this growing amount of available knowledge. Fortunately, important efforts have been made in gathering and organizing knowledge for some time now, and a lot of structured information can be found in repositories called Knowledge Bases (KBs). A main issue with KBs is that they are far from being complete. This thesis proposes several methods to add new links between the existing entities of the KB based on the learning of representations that optimize some defined energy function. We also propose a novel application to make use of this structured information to generate questions in natural language.
|
4 |
Tailored Query Resolution for Medical Data Interaction: Integrating LangChain4j, LLMs, and Retrieval Augmented Generation : Utilizing Real Time Embedding Techniques / Skräddarsydd Frågeupplösning för Interaktion med Medicinsk Data: Integrering av LangChain4j, LLMs och Hämtnings-Förstärkt Generation : Med realtidsinbäddningteknikerTegsten, Samuel January 2024 (has links)
Current artificial intelligence tools, including machine learning and large language models, display inabilities to interact with medical data in real time and raise privacy concerns related to user data management. This study illustrates the development of a system prototype using LangChain4j, which is an open-source project offering a multitude of AI-tools, including embedding tools, retrieval-augmented generation, and unified API:s for large language model providers. It was utilized to process medical data from a Neo4j database and enabled real-time interaction for that data. All content generation was generated locally to address privacy concerns, while using Apache Kafka for data distribution. The system prototype was evaluated by response time, resource consumption and accuracy assessment. Among the models assessed, LLaMA 3 emerged as the top performer in accuracy, successfully identifying 42.87% of all attributes with a correctness rate of 89.81%. Meanwhile, Phi3 exhibited superior outcomes in both resource consumption and response time. The embedding process, while enabling the selection of visible data, imposed limitations on general usability. In summary, this thesis advances data interaction using AI by developing a prototype that enables real-time interaction with medical data. It achieves high accuracy and efficient resource utilization while addressing limitations in current AI tools related to real-time processing and privacy concerns. / Nuvarande verktyg för artificiell intelligens, inklusive maskininlärning och stora språkmodeller, visar oförmåga att interagera med medicinska data i realtid och väcker integritetsproblem relaterade till hantering av användardata. Denna studie illustrerar utvecklingen av ett systemprototyp med LangChain4j, ett open-source-projekt som erbjuder en mängd AI-verktyg, inklusive inbäddningsverktyg, retrieval-augmented generation och enhetliga API för leverantörer av stora språkmodeller. Det användes för att bearbeta medicinska data från en Neo4j-databas och möjliggjorde realtidsinteraktion för dessa data. All innehållsgenerering skedde lokalt med Apache Kafka för datadistribution. Systemprototypen utvärderades utifrån svarstid, resursförbrukning och noggrannhetsbedömning. Bland de modeller som utvärderades visade sig LLaMA 3 vara den bästa presteraren i noggrannhet, och identifierade framgångsrikt 42,87 % av alla attribut med en korrekthet på 89,81 %. Samtidigt visade Phi3 överlägsna resultat både i resursförbrukning och svarstid. Inbäddningsprocessen, medan den möjliggjorde valet av synliga data, innebar begränsningar för allmän användbarhet. Sammanfattningsvis förbättrar denna avhandling datainteraktion med AI genom att utveckla en prototyp som möjliggör realtidsinteraktion med medicinska data. Den uppnår hög noggrannhet och effektiv resursanvändning samtidigt som den adresserar begränsningar i nuvarande AI-verktyg relaterade till realtidsbearbetning och integritetsproblem.
|
Page generated in 0.0905 seconds