• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 26
  • 5
  • 1
  • Tagged with
  • 62
  • 29
  • 25
  • 25
  • 25
  • 21
  • 19
  • 17
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation

Tripathi, Shashwat 06 September 2023 (has links)
[ES] Los estudios realizados en el pasado han demostrado que, a pesar de tener cero emisiones del tubo de escape, un vehículo completamente eléctrico tiene emisiones durante el ciclo de vida. El desarrollo tecnológico a lo largo de los años por parte de la humanidad ha llevado constantemente a un aumento de la dependencia energética. Desafortunadamente, esta energía proviene principalmente de fuentes fósiles. Uno de los principales consumidores de energía de origen fósil es la industria del transporte, que utiliza petróleo y diesel como combustibles. Estos combustibles se queman en motores de combustión interna para producir energía debido a su alto poder calorífico. Dado que estos son combustibles a base de carbono, genera dióxido de carbono durante el proceso, que es un gas de efecto invernadero. Por lo tanto, ha habido un seguimiento y una regulación muy estrictos de los tubos de escape de los automóviles a lo largo de los años. Recientemente, diferentes regiones del mundo han planeado prohibir la venta de vehículos convencionales basados en motores de combustión interna. Por lo tanto, vender solo vehículos con cero emisiones de escape, como vehículos eléctricos de batería y vehículos eléctricos de pila de combustible. Esto se debe principalmente a la intensidad de las emisiones de la combinación de electricidad, para alimentar las baterías y el proceso de fabricación de baterías para vehículos eléctricos de batería. Mientras que los vehículos eléctricos de pila de combustible dependen de la intensidad de emisión de la producción de hidrógeno. Dado que la producción actual de hidrógeno es muy limitada y tiene un alto contenido de carbono, los vehículos eléctricos de batería son los preferidos para reemplazar a los vehículos con motor de combustión interna. Otra razón detrás del impulso de este cambio es la alta eficiencia de los sistemas de propulsión eléctricos. A pesar de eso, es muy difícil para los vehículos eléctricos de batería igualar el rango de conducción de los vehículos con motor de combustión interna debido a la gran diferencia en la densidad de energía de las baterías y los combustibles líquidos. En condiciones reales de conducción, este rango de conducción es aún más reducido, a pesar de tener grandes paquetes de baterías a bordo. Esta es una limitación importante para el uso de vehículos eléctricos de batería, hasta que se desarrolle una infraestructura de carga extensa. Por ello, en esta tesis se evalúa el potencial de reducción de emisiones de los vehículos eléctricos con un enfoque de ciclo de vida para turismos y autobuses. Esto se hace comparando sus emisiones con las de los vehículos diésel convencionales y eléctricos híbridos para ciclos de conducción reales utilizando simulaciones numéricas 0D. Esto se complementa con estudios del costo del ciclo de vida de los diferentes vehículos para ver qué opción de tren motriz puede ser más eficiente. Además, los combustibles sintéticos bajos en carbono también se están evaluando como una solución alternativa para reemplazar el combustible diesel y ver el cambio que puede traer al ciclo de vida de los vehículos con motor de combustión interna. Estas evaluaciones se realizan para diferentes ubicaciones a nivel mundial para observar los factores locales que afectan los resultados. Por lo tanto, este trabajo tiene como objetivo evaluar los resultados del ciclo de vida para los responsables políticos y los fabricantes de automóviles a nivel mundial, tanto de las emisiones como del costo, asociados con cada opción de tren motriz. Como resultado de esta investigación, se observan varios desafíos relacionados con los vehículos eléctricos de batería que deben abordarse antes de su adopción masiva. Por lo tanto, se propone el uso de vehículos híbridos como una solución a corto plazo para abordar la urgencia de reducción de emisiones globales. Lo cual, de hecho, también puede considerarse una solución a largo plazo si funciona con combustibles bajos en carbono. / [CA] Els estudis realitzats en el passat han demostrat que, malgrat tenir zero emissions del tub d'escapament, un vehicle completament elèctric té emissions durant el cicle de vida. El desenvolupament tecnològic al llarg dels anys per part de la humanitat ha portat constantment a un augment de la dependència energètica. Desafortunadament, aquesta energia prové principalment de fonts fòssils. Un dels principals consumidors denergia dorigen fòssil és la indústria del transport, que utilitza petroli i dièsel com a combustibles. Aquests combustibles es cremen en motors de combustió interna per produir energia a causa del seu alt poder calorífic. Atès que són combustibles a base de carboni, genera diòxid de carboni durant el procés, que és un gas d'efecte hivernacle. Per tant, hi ha hagut un seguiment i una regulació molt estrictes dels tubs de fuga dels automòbils al llarg dels anys. Recentment, diverses regions del món han planejat prohibir la venda de vehicles convencionals basats en motors de combustió interna. Per tant, vendre només vehicles amb zero emissions d'escapament, com ara vehicles elèctrics de bateria i vehicles elèctrics de pila de combustible. Això es deu principalment a la intensitat de les emissions de la combinació delectricitat, per alimentar les bateries i el procés de fabricació de bateries per a vehicles elèctrics de bateria. Mentres que els vehicles elèctrics de pila de combustible depenen de la intensitat d'emissió de la producció d'hidrogen. Atès que la producció actual dhidrogen és molt limitada i té un alt contingut de carboni, els vehicles elèctrics de bateria són els preferits per reemplaçar els vehicles amb motor de combustió interna. Una altra raó darrere de l¿impuls d¿aquest canvi és l¿alta eficiència dels sistemes de propulsió elèctrics. Tot i això, és molt difícil per als vehicles elèctrics de bateria igualar el rang de conducció dels vehicles amb motor de combustió interna a causa de la gran diferència en la densitat denergia de les bateries i els combustibles líquids. En condicions reals de conducció, aquest rang de conducció encara és més reduït, tot i tenir grans paquets de bateries a bord. Aquesta és una limitació important per a lús de vehicles elèctrics de bateria, fins que es desenvolupi una infraestructura de càrrega extensa. Per això, en aquesta tesi s"avalua el potencial de reducció d"emissions dels vehicles elèctrics amb un enfocament de cicle de vida per a turismes i autobusos. Això es fa comparant les seves emissions amb les dels vehicles dièsel convencionals i elèctrics híbrids per a cicles de conducció reals utilitzant simulacions numèriques 0D. Això es complementa amb estudis del cost del cicle de vida dels diferents vehicles per veure quina opció de tren motriu pot ser més eficient. A més, els combustibles sintètics baixos en carboni també s'estan avaluant com a solució alternativa per reemplaçar el combustible dièsel i veure el canvi que pot portar al cicle de vida dels vehicles amb motor de combustió interna. Aquestes avaluacions es fan per a diferents ubicacions a nivell mundial per observar els factors locals que afecten els resultats. Per tant, aquest treball té per objectiu avaluar els resultats del cicle de vida per als responsables polítics i els fabricants d'automòbils a nivell mundial, tant de les emissions com del cost, associats amb cada opció de tren motriu. Com a resultat d'aquesta investigació, s'observen diversos desafiaments relacionats amb els vehicles elèctrics de bateria que cal abordar abans de la seva adopció massiva. Per tant, es proposa utilitzar vehicles híbrids com una solució a curt termini per abordar la urgència de reducció d'emissions globals. Això, de fet, també es pot considerar una solució a llarg termini si funciona amb combustibles baixos en carboni. / [EN] Several studies in the past have shown that despite having zero tailpipe emissions in a fully electric vehicle, it does have emissions when evaluated on a life cycle basis. Technology development over the years by humankind has constantly led to an increase in energy dependence. Unfortunately, this energy comes mainly from fossil-based sources that are limited. One major consumer of fossil-based energy sources is the transportation industry, which uses fossil-based petrol and diesel as fuels. These fuels are burned in internal combustion engines to produce energy due to their high calorific value. Since these are carbon-based fuels, it generates carbon dioxide during the combustion process, which is a greenhouse gas and leads to global warming. Therefore, there has been very strict monitoring and regulation of its emissions from the automotive tailpipes over the years. In recent years, different regions across the world have planned to completely stop the sale of conventional internal combustion engine-based vehicles. Thus, selling only zero tailpipe emission vehicles such as battery electric vehicles and fuel cell electric vehicles. This is primarily due to the emission intensity of the electricity mix used to power the batteries and from the battery manufacturing process for battery electric vehicles. At the same time, the fuel cell vehicle depends mainly on the emission intensity of hydrogen production. Since current hydrogen production is very limited and carbon-intensive, battery electric vehicles are highly favoured to replace internal combustion engine vehicles soon. Another reason behind the push for this shift is the high efficiency of electric powertrains. Despite that, it is very challenging for battery electric vehicles to match the driving range of internal combustion engine vehicles due to the large difference in the energy density of batteries and liquid fuels, currently. Further, in real driving conditions, this driving range is even more reduced for electric vehicles, even after having large battery packs on board. This is a major limitation for battery electric vehicles, especially for the ones meant for long haul routes, until an extensive charging infrastructure is developed. Therefore, in this thesis, the emission reduction potential of electric vehicles is evaluated following a life cycle approach for passenger cars and city buses. This is done by comparing their emissions with that of conventional diesel and hybrid electric vehicles for real driving cycles by means of 0D numerical simulations. This is complemented with life cycle cost studies for the different vehicles to see which powertrain option can be efficient in terms of emissions but also cost. Moreover, low-carbon synthetic fuels are also evaluated as an alternative drop-in solution to replace diesel fuel and see the change it can bring on a life cycle basis for hybrid and conventional internal combustion engine vehicles. These evaluations are done for different locations globally to observe the local factors that affect the results of each powertrain option for the two vehicle segments. Thus, this work is intended to evaluate the life cycle results for the policymakers and automobile manufacturers globally, for the emissions as well as the cost associated with each powertrain option. As an outcome of this research, several challenges are observed related to emissions and cost of the battery electric vehicles that need to be addressed before their mass adoption. Hence, the use of hybrid vehicles as a short-term solution to address the global emission reduction urgency is proposed for the road transportation sector. Which, in fact, may also be considered a long-term solution if powered with low-carbon fuels. / Tripathi, S. (2023). Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196725
62

Study of oxy-fuel combustion-based power plants with in-situ O2 production and carbon capture.

Farias Da Silva, Vitor Hugo 02 September 2024 (has links)
[ES] En los últimos años, la preocupación mundial con el aumento de las emisiones antropogénicas de gases de efecto invernadero ha motivado a las industrias del transporte y la energía a moverse hacia el desarrollo de tecnologías sostenibles con bajas o nulas emisiones de contaminantes de plantas de generación de potencia. Con este escenario, la oxicombustión surge como uno de los métodos más prometedores para mitigar la huella ambiental de plantas de generación de potencia, al erradicar sus emisiones contaminantes del tubo de escape, además de permitir la captura de dióxido de carbono (CO2) de sus gases producidos en la combustión. De esta manera, el oxígeno puro (O2) se diluye con el gas de escape recirculado para que reaccione con el combustible en el proceso de combustión y, de este modo, la corriente de gases de escape, compuesta principalmente por CO2 y vapor de agua, puede ser sometida a etapas elementales de enfriamiento y presurización para capturar CO2 de alta pureza a temperatura ambiente. Dado este contexto, en esta tesis, se desarrolla un modelo de sistema autosostenible a oxicombustión con captura de carbono para un motor policilíndrico de encendido por compresión (MEC) de 2,2 litros turboalimentado y de inyección directa como demostración de viabilidad de este concepto propuesto, considerando su aplicación potencial para el desarrollo de plantas de potencia de altas prestaciones con cero emisiones. En tales circunstancias, se emplea una membrana conductora mixta iónica-electrónica para generar O2 a partir del aire local. Para ello, se recupera la energía residual de los gases de escape mediante un ciclo Brayton adaptado con el fin de proporcionar las condiciones adecuadas para el correcto funcionamiento de la membrana en términos de temperatura y relación de presión alimentación-permeado. Asimismo, se diseña un sistema de captura de carbono (CC) local, compuesto esencialmente por dos compresores alternativos, tres unidades de refrigeración con separación de líquidos (flashes) y un tanque de almacenamiento de CO2, teniendo en cuenta las temperaturas de salida de los flashes y la presión de funcionamiento de la última etapa de purificación del CO2. En primer lugar, se diseña el modelo del sistema de oxicombustión con el motor y sus componentes auxiliares (intercambiadores de calor y turbocompresores) y, a continuación, el sistema es evaluado bajo condiciones de oxicombustión para la curva de plena carga del motor desde 1250 rpm hasta 3500 rpm en ausencia del CC, contrastando sus resultados con el comportamiento del MEC convencional de referencia. En segundo lugar, se amplía el mapa de funcionamiento de carga del motor de oxicombustión hasta los límites de estabilidad del sistema modificando el dosado oxígeno-combustible y la temperatura de los gases de escape para tres regímenes del motor. Por último, se diseña el CC y se lo acopla a la unidad de generación de O2, reciclando el agua y el exceso de O2 del CC de nuevo a la admisión del motor. A este respecto, un barrido es llevado a cabo sobre el inicio de la inyección y el flujo másico de agua recirculada para encontrar el punto de funcionamiento óptimo a 3500 rpm con respeto a la compensación entre las prestaciones del motor y la potencia de refrigeración adicional. A continuación, se mejora y adapta el modelo del sistema completo de oxicombustión con captura de carbono para una aplicación realista a escala de laboratorio y una prueba de concepto experimental, siguiendo la misma filosofía de compensación. Aunque el diseño final del motor de oxicombustión con captura de carbono presenta un ligero empeoramiento de prestaciones comparado con el MEC convencional de referencia a 3500 rpm, este nuevo concepto propuesto puede seguir siendo competitivo desde el punto de vista de la eficiencia energética como tecnología emergente que puede contribuir a la concepción de plantas de generación de potencia con emisiones cero a escala industrial comercial. / [CA] En els darrers anys, la preocupació mundial amb l'augment de les emissions antropogèniques de gasos d'efecte hivernacle ha motivat les indústries del transport i l'energia a moure's cap al desenvolupament de tecnologies sostenibles amb baixes o nul·les emissions de contaminants de plantes de generació de potència. Amb aquest escenari, l'oxicombustió sorgeix com un dels mètodes més prometedors per mitigar l'empremta ambiental de plantes de generació de potència, en eradicar les emissions contaminants del tub d'escapament, a més de permetre la captura de diòxid de carboni (CO2) dels seus gasos produïts a la combustió. D'aquesta manera, l'oxigen pur (O2) es dilueix amb el gas d'escapament recirculat perquè reaccioni amb el combustible en el procés de combustió i així el corrent de gasos d'escapament, compost principalment per CO2 i vapor d'aigua , pot ser sotmesa a etapes elementals de refredament i pressurització per capturar CO2 d'alta puresa a temperatura ambient. Atès aquest context, en aquesta tesi, es desenvolupa un model de sistema autosostenible a oxicombustió amb captura de carboni per a un motor policilíndric d'encesa per compressió (MEC) de 2,2 litres turboalimentat i d'injecció directa com a demostració de viabilitat d'aquest concepte proposat , considerant la seva aplicació potencial per al desenvolupament de plantes de potència d'altes prestacions amb zero emissions. En aquestes circumstàncies, es fa servir una membrana conductora mixta iònica-electrònica per generar O2 a partir de l'aire local. Per això, es recupera l'energia residual dels gasos d'escapament mitjançant un cicle Brayton adaptat per tal de proporcionar les condicions adequades per al funcionament correcte de la membrana en termes de temperatura i relació de pressió alimentació-permeat. Així mateix, es dissenya un sistema de captura de carboni (CC) local, compost essencialment per dos compressors alternatius, tres unitats de refrigeració amb separació de líquids (flaixos) i un tanc d'emmagatzematge de CO2, tenint en compte les temperatures de sortida dels flaixos i la pressió de funcionament de l'última etapa de purificació del CO2. En primer lloc, es dissenya el model del sistema d'oxicombustió amb el motor i els seus components auxiliars (intercanviadors de calor i turbocompressors) i, a continuació, el sistema és avaluat sota condicions d'oxicombustió per a la corba de plena càrrega del motor des de 1250 rpm fins a 3500 rpm en absència del CC, contrastant els resultats amb el comportament del MEC convencional de referència. En segon lloc, s'amplia el mapa de funcionament de càrrega del motor d'oxicombustió fins als límits d'estabilitat del sistema modificant el dosatge oxigen-combustible i la temperatura dels gasos d'escapament per a tres règims del motor. Finalment, es dissenya el CC i l'acobla a la unitat de generació d'O2, reciclant l'aigua i l'excés d'O2 del CC de nou a l'admissió del motor. Quant a això, un escombrat és dut a terme sobre l'inici de la injecció i el flux màssic d'aigua recirculada per trobar el punt de funcionament òptim a 3500 rpm respecte a la compensació entre les prestacions del motor i la potència de refrigeració addicional. A continuació, es millora i s'adapta el model del sistema complet d'oxicombustió amb captura de carboni per a una aplicació realista a escala de laboratori i una prova de concepte experimental, seguint la mateixa filosofia de compensació. Tot i que el disseny final del motor d'oxicombustió amb captura de carboni presenta un lleuger empitjorament de prestacions comparat amb el MEC convencional de referència a 3500 rpm, aquest nou concepte proposat pot continuar sent competitiu des del punt de vista de l'eficiència energètica com a tecnologia emergent que pot contribuir a la concepció de plantes de generació de potència amb emissions zero a escala industrial comercial. / [EN] In recent years, a worldwide concern with respect to an increase in anthropogenic greenhouse gas emissions has pushed transport and energy industries towards the development of sustainable technologies with low or zero pollutant emissions from powerplants. Within this scenarios, oxy-fuel combustion arises as one of the most promising methods to mitigate the environmental footprint of powerplants, by eradicating their pollutant tailpipe emissions, in addition to enabling carbon dioxide (CO2) capture from their flue gas. In this case, pure oxygen (O2) is diluted with recirculated exhaust gas to react with fuel for the combustion process and, thereby, the exhaust stream, mainly composed of CO2 and water vapor, may be subjected to elementary cooling and pressurizing steps for capturing high-purity CO2 at ambient temperature. Therefore, in this thesis, a self-sustaining oxy-fuel carbon-capture layout model is developed for a 2.2 liter turbocharged and direct-injection multicylinder compression ignition engine (CIE) as a feasibility demonstration of this proposed concept considering its potential application for development of zero-emission high-duty powerplants. In such circumstances, a mixed ionicelectronic conducting membrane is employed to generate O2 from air in-situ. For this purpose, exhaust gas wasted energy is recovered via a tailored Brayton cycle in order to provide suitable conditions for proper membrane operation in terms of temperature and feed-permeate pressure ratio. Also, an in-situ carbon capture system (CC), composed essentially of two reciprocating compressors, three cooling units with liquid separation (flashes) and a CO2 storage tank, is designed taking into account the flash out temperatures and operating pressure of the last CO2 purification step. Firstly, the oxy-fuel layout model with engine and its auxiliary components (heat exchangers and turbochargers) is designed and then assessed under oxyfuel combustion conditions for the engine full-load curve from 1250 rpm to 3500 rpm in the absence of the CC, contrasting its outputs against the baseline conventional multi-cylinder CIE behavior. Secondly, the oxy-fuel powerplant load operation map is extended until system stability limits by modifying oxygen-fuel ratio and exhaust gas temperature for three engine speeds. Finally, the CC is designed and then coupled to the O2 generation unit, recycling water and excess of O2 from CC back to engine intake. In this regard, start of injection and recirculated water mass flow are swept in order to find out optimum operating point concerning the trade-off between powerplant performance and additional cooling power at 3500 rpm. Thereafter, the complete oxy-fuel carbon-capture layout model is enhanced and adapted for realistic application at laboratory scale and experimental proof of concept, following same trade-off philosophy. Although the final oxyfuel carbon-capture engine layout presents slight deterioration in performance if compared to the baseline conventional multi-cylinder CIE at 3500 rpm, this proposed novel concept may be still energy-efficient competitive as an emerging technology which might contribute for conception of zero-emission powerplant on commercial industrial scale. / Farias Da Silva, VH. (2024). Study of oxy-fuel combustion-based power plants with in-situ O2 production and carbon capture [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207281

Page generated in 0.0559 seconds