91 |
Phosphor-free multilayered LEDs and thin film LEDsCheung, Yuk-fai, 張煜輝 January 2013 (has links)
The irreversible trend of replacing the conventional incandescence light bulbs and fluorescent tubes with white light emitting diodes (LEDs) aims to use less energy for lighting. Plenty of the commercially available white LEDs are made from blue LED chips with few-micron-thick gallium nitride (GaN) grown on several hundred micron thick transparent sapphire substrates, followed by coating of yellow phosphor powder on top of the chips for converting the emitted blue light to white light. Not only does such approach give the white LEDs a high colour temperature, but also introduces conversion loss from the phosphor powder. The former issue makes users feel unpleasant for living while the latter wastes energy.
Therefore, a new version of phosphor-free multilayered vertically-stacked colour-tunable LED structure is proposed in this thesis such that it allows users to regulate the colour temperature of light source according to their preference. Simultaneously, the device replaces light conversion agents with direct light generation. The fabrication of the proposed device involved the use of backside laser micromachining of trenches on the substrates of the upper layers of basic colour LED chips at a size just enough to fit the wire-bonded wire of lower layer LED chips inside. With equal-sized basic colour LED chips tightly packed together, colour homogeneity of the proposed device is enhanced and thus provides the proposed device the capability to substitute the conventional RGB LED devices with basic colour LED chips separately aligned.
To improve the internal quantum efficiency and light extraction of nitride-based LEDs, thin film photonic crystal LED is proposed. Light and heat trapping sapphire substrate is removed by laser lift-off (LLO), forming GaN thin film on an electrically conductive opaque substrate with better heat conductivity than sapphire. By proper etching, N-dopped GaN layer can be exposed, resulting in the formation of vertical LED. Compared with conventional lateral LEDs with sapphire substrate, carrier path of vertical LED is greatly reduced and hence achieving lower internal resistance. To further boost light extraction, the device top surface is patterned with nanopillars by nanosphere lithography. A monolayer of closely-packed silica nanospheres is patterned on the N-GaN surface by spin coating. It acts as a mask for etching the nanopillars which bandfold lights from diffracted modes to radiative modes located above the light line for extraction.
A typical laser LLO process results in thin films with undopped gallium nitride (U-GaN) surface or N-GaN (after etching) faces up. If P-side up is necessary, the GaN layers are first required to attach to a temporary substrate for LLO and then the LLO exposed surface is adhered to the real substrate before temporary substrate is detached. This method is proposed to relieve the issue of light channeling inside the sapphire substrate of full colour LED micro-display panel fabricated on a single GaN on Sapphire wafer. With the elimination of sapphire, “parasitic” blue emissions from the area surrounding pixels are reduced which in turns improved the observable effects from the microspheres jet-printed on the top surface of the panel. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
|
92 |
Novel cerium-doped phosphors for solid-state lightingKalaji, Ali January 2013 (has links)
No description available.
|
93 |
Development and application of an entangled-light-emitting diodeSalter, Cameron Lewis January 2012 (has links)
No description available.
|
94 |
Synthesis and photoluminescent properties of linear and starburst compounds based on benzimidazole, 2-(2'-pyridyl)benzimidazole and 2,2'-dipyridylamineWhite, Wade M. 02 August 2007 (has links)
The objective of this thesis was to explore the chemistry of series of linear and star shaped compounds based on benzimidazolyl, 2-(2’-pyridyl)benzimidazolyl, and 2,2’-dipyridylamino functional groups. These groups all possess Lewis base sites suitable for metal coordination, and are all known fluorophores.
The first compounds to be presented are the homo-substituted benzimidazolyl derivatives. Compounds 2.1-2.5 have been fully characterized and are all luminescent with emission energies in the UV region. While coordination complexes with these ligands have not been isolated, the effect of metal ion complexation on ligand luminescence has been explored via metal ion titration experiments. Furthermore, these compounds all have electron affinities greater than -3.0 eV and large optical bandgaps that range between 3.55 and 3.95 eV. These compounds also have high thermal and morphological stability. In light of this, compound 2.3 was selected as a representative example, and further characterized as an electron transport/hole blocking material for OLED applications. It has demonstrated a performance comparable to that of the well known electron transport material Alq3 (q = 8-hydroxyquinolinate).
The second class of compounds, 3.2 and 3.3, represent a pair of hetero-substituted ligands with two different binding sites available for coordination chemistry. A copper (I) complex of 3.3 has been isolated and exhibits orange phosphorescence at room temperature and at 77 K. Furthermore, a series of metal titration experiments have been performed on 3.3 and 3.4, and have demonstrated the preference of different metal ions for either the 2,2’-dipyridylamino site, or the 2-(2’-pyridyl)benzimidazolyl binding site. The details of these explorations will be presented in the subsequent chapters. / Thesis (Master, Chemistry) -- Queen's University, 2007-07-31 12:17:06.011
|
95 |
Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport LayersZhu, Jiayuan 15 November 2013 (has links)
Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon quantum dots as an emission layer, and metal oxides as charge transport layers. Sputtering deposition conditions for the nickel and zinc oxides were explored in order to balance deposition rate with minimal roughness, optical absorption, and electrical resistivity. Devices displaying characteristic diode current-voltage behavior were routinely produced, although most showed significant reverse saturation current due to the presence of shunts. Current-voltage behavior of devices made in the same batch showed high repeatability, however variations in device performance was observed between batches while the parameters of synthesis were kept constant. Some devices were observed to emit orange-colored light, consistent with photoluminescence behavior of the silicon quantum dots. Photomultiplier tube measurements shows a turn-on voltage of 5V and an exponential increase in light emission with voltage increase.
|
96 |
Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport LayersZhu, Jiayuan 15 November 2013 (has links)
Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon quantum dots as an emission layer, and metal oxides as charge transport layers. Sputtering deposition conditions for the nickel and zinc oxides were explored in order to balance deposition rate with minimal roughness, optical absorption, and electrical resistivity. Devices displaying characteristic diode current-voltage behavior were routinely produced, although most showed significant reverse saturation current due to the presence of shunts. Current-voltage behavior of devices made in the same batch showed high repeatability, however variations in device performance was observed between batches while the parameters of synthesis were kept constant. Some devices were observed to emit orange-colored light, consistent with photoluminescence behavior of the silicon quantum dots. Photomultiplier tube measurements shows a turn-on voltage of 5V and an exponential increase in light emission with voltage increase.
|
97 |
Investigation into the efficiency limitations of InGaN-based light emittersCrutchley, Benjamin G. January 2012 (has links)
No description available.
|
98 |
Design of High Performance Organic Light Emitting DiodesWang, Zhibin 07 January 2013 (has links)
Organic light emitting diodes (OLEDs) are being commercialized in display applications, and will be potentially in lighting applications in the near future. This thesis is about the design of high performance OLEDs, which includes both the electrical and optical design of OLEDs. In particular, the following work is included in this thesis: i) Energy level alignment and charge injection at metal/organic interfaces have been systematically studied. ii) Transition metal oxide anodes have been developed to inject sufficient holes into the OLEDs due to their high work function. The oxide anodes have also been used to systematically study the transport properties in organic semiconductors. iii) Highly simplified OLED devices with unprecedentedly high efficiency have been realized using both fluorescent and phosphorescent emitters. The high performance was enabled by using a high work function metal oxide anode and a hole transport material with very a deep highest occupied molecular orbital (HOMO). iv) An optical model has been developed to describe the optical electric field across the OLED device. By using the model, a high performance flexible OLED using metal anode was designed and realized.
|
99 |
LEDs and Doped Polymer Light Guides for Efficient Illumination and Colour EngineeringJanuary 2005 (has links)
This project involves the study of optical properties of polymers doped with TRIMM (transparent refractive index matched micro-particles), and their uses in light guides. The refractive index difference between dopant and host material is small (0.02), so forward transmittance is high, and losses due to backscattering are negligible. Flexible polymer optical fibre (POF) and polymethylmethacrylate (PMMA) rods are being incorporated into an increasing range of lighting and light mixing applications. For energy efficient mixing of red, green and blue (RGB) light-emitting diodes (LEDs) to produce white light and a range of other colours, light is transmitted from the end of a light guide ('endlight'). A major problem here is solved, namely the achievement of uniform illumination, simultaneously with low losses from scattering. Light output from RGB LEDs is shown to be completely mixed by short TRIMM-doped light guides. Alternatively, long lengths of TRIMM-doped POF can be used for 'side-light'. The concentration of TRIMM for these is chosen such that light is emitted from the side walls of the guide to give even illumination along its length. A geometrical method of ray tracing in particle-doped rectangular and cylindrical light guides is derived, and Monte Carlo ray tracing simulations performed for undoped and TRIMM-doped light guides. The evolution of the distribution of ray angles, internal and external to a light guide, with propagation distance are studied. Computer simulations of angular distribution of light emitted from the wall of POF agree with measurements performed using a photogoniometer. Simulations and measurements of light output intensity and colour from RGB LED arrays when projected from the end of a mixing rod, are also presented. Colour calculations agree with photometric measurements of RGB LED output from clear and TRIMM-doped PMMA mixing rods. Results of transmittance measurements and computer simulations show that light losses are almost entirely due to Fresnel reflectance from the entrance and exit surfaces of the rods. Photogoniometer measurements of the angular distribution of light from LEDs are used as a basis for LED source models used in ray tracing simulations. Results of an investigation comparing the effect of using a smoothed LED source model instead of measurement-based models on simulated light output distributions are presented. The light output from LEDs can have sudden peaks in intensity at certain angles, resulting in distinctive patterns with clear colour separation, after mixing in clear polymer mixing rods. These caustic patterns are eliminated by using TRIMM-doped mixing rods, with a transmittance of 90% after Fresnel losses, which can be readily reduced.
|
100 |
Fabrication of high power InGaN/GaN multiple quantum well blue LEDs grown on patterned Si substrates /Liang, Hu. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references. Also available in electronic version.
|
Page generated in 0.0743 seconds