• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 619
  • 158
  • 86
  • 74
  • 55
  • 47
  • 33
  • 17
  • 16
  • 14
  • 13
  • 12
  • 9
  • 8
  • 8
  • Tagged with
  • 1432
  • 210
  • 190
  • 190
  • 183
  • 180
  • 124
  • 118
  • 104
  • 103
  • 99
  • 85
  • 81
  • 80
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

A Role for Partial Awareness in the Modulation of Semantic Priming Effects

Thomas, Joseph Denard January 2008 (has links)
The present study sought to investigate the extent to which masked semantic priming is an automatic process and whether its effects vary depending upon the type of stimuli used. Recent studies have shown that there is a differential priming effect for prime-target pairs with different types of semantic relationships. Here, using a semantic categorization task with masked priming, we compared the effects of synonym, antonym,and associatively related non-exemplar prime-target pairs when presented at different stimulus onset asynchronies (SOAs). Participants took a prime visibility posttest in conjunction with the categorization task which served as a measure of "partial awareness" of the prime. The results here indicate that differences in perceptual awareness may produce differential semantic priming patterns across the semantic relationships and SOAs considered. Potential mechanisms for this divergence are proposed.
372

To explore and verify in mathematics

Bergqvist, Tomas January 2001 (has links)
This dissertation consists of four articles and a summary. The main focus of the studies is students' explorations in upper secondary school mathematics. In the first study the central research question was to find out if the students could learn something difficult by using the graphing calculator. The students were working with questions connected to factorisation of quadratic polynomials, and the factor theorem. The results indicate that the students got a better understanding for the factor theorem, and for the connection between graphical and algebraical representations. The second study focused on a the last part of an investigation, the verification of an idea or a conjecture. Students were given three conjectures and asked to decide if they were true or false, and also to explain why the conjectures were true or false. In this study I found that the students wanted to use rather abstract mathematics in order to verify the conjectures. Since the results from the second study disagreed with other research in similar situations, I wanted to see what Swedish teachers had to say of the students' ways to verify the conjectures. The third study is an interview study where some teachers were asked what expectations they had on students who were supposed to verify the three conjectures from the second study. The teachers were also confronted with examples from my second study, and asked to comment on how the students performed. The results indicate that teachers tend to underestimate students' mathematical reasoning. A central focus to all my three studies is explorations in mathematics. My fourth study, a revised version of a pilot study performed 1998, concerns exactly that: how students in upper secondary school explore a mathematical concept. The results indicate that the students are able to perform explorations in mathematics, and that the graphing calculator has a potential as a pedagogical aid, it can be a support for the students' mathematical reasoning.
373

Jackknife Empirical Likelihood-Based Confidence Intervals for Low Income Proportions with Missing Data

YIN, YANAN 18 December 2013 (has links)
The estimation of low income proportions plays an important role in comparisons of poverty in different countries. In most countries, the stability of the society and the development of economics depend on the estimation of low income proportions. An accurate estimation of a low income proportion has a crucial role for the development of the natural economy and the improvement of people's living standards. In this thesis, the Jackknife empirical likelihood method is employed to construct confidence intervals for a low income proportion when the observed data had missing values. Comprehensive simulation studies are conducted to compare the relative performances of two Jackknife empirical likelihood based confidence intervals for low income proportions in terms of coverage probability. A real data example is used to illustrate the application of the proposed methods.
374

Mechanistic-empirical failure prediction models for spring weight restricted flexible pavements in Manitoba using Manitoba and MnROAD instrumented test sites

Kavanagh, Leonnie 27 June 2013 (has links)
Pavement damage due to heavy loads on thaw weakened flexible pavements is a major concern for road agencies in Western Canada. To protect weaker, low volume roads, agencies impose spring weight restrictions (SWR) during the spring thaw to reduce pavement damage. While SWR may be cost effective for highway agencies, reducing the spring weight allowances can have a major impact on truck productivity and shipping costs. Therefore an improved process that links SWR loads to pavement damage, and based on limiting failure strain, is required. This thesis developed Local mechanistic-empirical damage models to predict fatigue and rutting failure on two spring weight restricted (SWR) flexible pavements in Manitoba. The Local damage models were used to assess the SWR loads that regulate commercial vehicle weights in Manitoba based on a limiting strain relationship between truck loads and damage. The Local damage models and a calibrated Finite Element Model (FEM) were used to predict the equivalent single axle load (ESAL) repetitions to fatigue and rutting failure at varying B-Train axle loads at the Manitoba sites. The Local model predictions were compared to predictions from the Asphalt Institute (AI) and Mechanistic Empirical Design Guide (MEPDG) damage models. The results of the analysis showed that for each 1% increase in load, there was a corresponding 1% increase in strain, and up to 3% decrease in ESAL repetitions to failure, depending on the Local, AI, or MEPDG damage models. The limiting failure strains, computed from the Local model for design ESALs of 100,000, were 483μm/m and 1,008μm/m for fatigue and rutting failure, respectively. For the Manitoba sites, the predicted FEM strains at B-Train normal and SWR loads were higher than the Local model limiting strains. Therefore the Manitoba ii SWR loads regulating B-Train operations on the two pavements during the spring period appeared to be reasonable. It is recommended that the research findings be verified with further calibration and validation of the Local damage model using a larger data set of low volume flexible pavements. A strain-based concept on how to manage the SWR regime in Manitoba based on the limiting strains was developed and presented.
375

Empirical Likelihood Confidence Intervals for ROC Curves Under Right Censorship

Yang, Hanfang 16 September 2010 (has links)
In this thesis, we apply smoothed empirical likelihood method to investigate confidence intervals for the receiver operating characteristic (ROC) curve with right censoring. As a particular application of comparison of distributions from two populations, the ROC curve is constructed by the combination of cumulative distribution function and quantile function. Under mild conditions, the smoothed empirical likelihood ratio converges to chi-square distribution, which is the well-known Wilks's theorem. Furthermore, the performances of the empirical likelihood method are also illustrated by simulation studies in terms of coverage probability and average length of confidence intervals. Finally, a primary biliary cirrhosis data is used to illustrate the proposed empirical likelihood procedure.
376

Empirical Likelihood-Based NonParametric Inference for the Difference between Two Partial AUCS

Yuan, Yan 02 August 2007 (has links)
Compare the accuracy of two continuous-scale tests is increasing important when a new test is developed. The traditional approach that compares the entire areas under two Receiver Operating Characteristic (ROC) curves is not sensitive when two ROC curves cross each other. A better approach to compare the accuracy of two diagnostic tests is to compare the areas under two ROC curves (AUCs) in the interested specificity interval. In this thesis, we have proposed bootstrap and empirical likelihood (EL) approach for inference of the difference between two partial AUCs. The empirical likelihood ratio for the difference between two partial AUCs is defined and its limiting distribution is shown to be a scaled chi-square distribution. The EL based confidence intervals for the difference between two partial AUCs are obtained. Additionally we have conducted simulation studies to compare four proposed EL and bootstrap based intervals.
377

On Intraclass Correlation Coefficients

Yu, Jianhui 17 July 2009 (has links)
This paper uses Maximum likelihood estimation method to estimate the common correlation coefficients for multivariate datasets. We discuss a graphical tool, Q-Q plot, to test equality of the common intraclass correlation coefficients. Kolmogorov-Smirnov test and Cramér-von Mises test are used to check if the intraclass correlation coefficients are the same among populations. Bootstrap and empirical likelihood methods are applied to construct the confidence interval of the common intraclass correlation coefficients.
378

Empirical Likelihood Inference for the Accelerated Failure Time Model via Kendall Estimating Equation

Lu, Yinghua 17 July 2010 (has links)
In this thesis, we study two methods for inference of parameters in the accelerated failure time model with right censoring data. One is the Wald-type method, which involves parameter estimation. The other one is empirical likelihood method, which is based on the asymptotic distribution of likelihood ratio. We employ a monotone censored data version of Kendall estimating equation, and construct confidence intervals from both methods. In the simulation studies, we compare the empirical likelihood (EL) and the Wald-type procedure in terms of coverage accuracy and average length of confidence intervals. It is concluded that the empirical likelihood method has a better performance. We also compare the EL for Kendall’s rank regression estimator with the EL for other well known estimators and find advantages of the EL for Kendall estimator for small size sample. Finally, a real clinical trial data is used for the purpose of illustration.
379

Empirical Likelihood Confidence Intervals for Generalized Lorenz Curve

Belinga-Hill, Nelly E. 28 November 2007 (has links)
Lorenz curves are extensively used in economics to analyze income inequality metrics. In this thesis, we discuss confidence interval estimation methods for generalized Lorenz curve. We first obtain normal approximation (NA) and empirical likelihood (EL) based confidence intervals for generalized Lorenz curves. Then we perform simulation studies to compare coverage probabilities and lengths of the proposed EL-based confidence interval with the NA-based confidence interval for generalized Lorenz curve. Simulation results show that the EL-based confidence intervals have better coverage probabilities and shorter lengths than the NA-based intervals at 100p-th percentiles when p is greater than 0.50. Finally, two real examples on income are used to evaluate the applicability of these methods: the first example is the 2001 income data from the Panel Study of Income Dynamics (PSID) and the second example makes use of households’ median income for the USA by counties for the years 1999 and 2006
380

Data Quality in Wide-Area Monitoring and Control Systems : PMU Data Latency, Completness, and Design of Wide-Area Damping Systems

Zhu, Kun January 2013 (has links)
The strain on modern electrical power system operation has led to an ever increasing utilization of new Information Communication Technology (ICT) systems to enhance the reliability and efficiency of grid operation. Among these proposals, Phasor Measurement Unit (PMU)-based Wide-Area Monitoring and Control (WAMC) systems have been recognized as one of the enablers of “Smart Grid”, particularly at the transmission level, due to their capability to improve the real-time situational awareness of the grid. These systems differ from the conventional Supervisory Control And Data Acquisition (SCADA) systems in that they provide globally synchronized measurements at high resolutions. On the other hand, the WAMC systems also impose several stringent requirements on the underlying ICT systems, including performance, security, and availability, etc. As a result, the functionality of the WAMC applications is heavily, but not exclusively, dependent on the capabilities of the underlying ICT systems. This tight coupling makes it difficult to fully exploit the benefits of the synchrophasor technology without the proper design and configuration of ICT systems to support the WAMC applications. The strain on modern electrical power system operation has led to an ever increasing utilization of new Information Communication Technology (ICT) systems to enhance the reliability and efficiency of grid operation. Among these proposals, Phasor Measurement Unit (PMU)-based Wide-Area Monitoring and Control (WAMC) systems have been recognized as one of the enablers of “Smart Grid”, particularly at the transmission level, due to their capability to improve the real-time situational awareness of the grid. These systems differ from the conventional Supervisory Control And Data Acquisition (SCADA) systems in that they provide globally synchronized measurements at high resolutions. On the other hand, the WAMC systems also impose several stringent requirements on the underlying ICT systems, including performance, security, and availability, etc. As a result, the functionality of the WAMC applications is heavily, but not exclusively, dependent on the capabilities of the underlying ICT systems. This tight coupling makes it difficult to fully exploit the benefits of the synchrophasor technology without the proper design and configuration of ICT systems to support the WAMC applications. In response to the above challenges, this thesis addresses the dependence of WAMC applications on the underlying ICT systems. Specifically, two of the WAMC system data quality attributes, latency and completeness, are examined together with their effects on a typical WAMC application, PMU-based wide-area damping systems. The outcomes of this research include quantified results in the form of PMU communication delays and data frame losses, and probability distributions that can model the PMU communication delays. Moreover, design requirements are determined for the wide-area damping systems, and three different delay-robust designs for this WAMC application are validated based on the above results. Finally, a virtual PMU is developed to perform power system and communication network co-simulations. The results reported by this thesis offer a prospect for better predictions of the performance of the supporting ICT systems in terms of PMU data latency and completeness. These results can be further used to design and optimize the WAMC applications and their underlying ICT systems in an integrated manner. This thesis also contributes a systematic approach to design the wide-area damping system considering the PMU data latency and completeness. Finally, the developed virtual PMU, as part of a co-simulation platform, provides a means to investigate the dependence of WAMC applications on the capabilities of the underlying ICT systems in a cost-efficient manner. / <p>QC 20131015</p>

Page generated in 0.0534 seconds