Spelling suggestions: "subject:"hindfoot"" "subject:"midfoot""
1 |
Uncovering astrocyte roles at the blood brain barrier in the healthy and concussed brainHeithoff, Benjamin Patrick 14 June 2021 (has links)
The blood-brain barrier (BBB) is regulated by factors that can be secreted by multiple cell types, including astrocytes, that maintain the BBB in health and promote repair after injury. However, astrocyte contributions to the BBB are largely assumed from transplantation studies in which astrocyte progenitor grafts conferred BBB-like properties to tissues that normally lack a BBB. To determine if astrocytes contribute an essential and non-redundant function in maintaining the healthy BBB, I genetically ablated a small number of astrocytes using a conditional, tamoxifen-inducible mouse model. Within 2 hours after induction, I observed sparse astrocyte death in the cortex and leakage of the small molecule Cadaverine and large plasma protein fibrinogen, which are normally contained by a functional BBB. Vessels within regions of ablated astrocytes showed reduced expression of the tight junction protein zonula occludens-1, indicating impairment of the physical barrier formed between endothelial cells. Cadaverine leakage persisted for weeks, a feature I also found in mice after mild concussive traumatic brain injury (cTBI), thus highlighting the potential for revealing astrocyte roles in post-injury repair. Unlike the genetic ablation model, astrocytes within Cadaverine leakage areas did not undergo cell death after cTBI and instead downregulated homeostatic proteins. Our preliminary results show this atypical phenotype appearing 10 minutes after cTBI, along with severe vessel rupture, BBB leakage, and disruption of endfoot and basement membrane proteins. This damage persists for months, suggesting that the BBB fails to repair in these areas. Our results provide direct in-vivo evidence for essential astrocyte roles in the maintenance of the healthy BBB. Maintenance and/or repair fail after mild concussive cTBI, possibly contributing to irreversible progression to neurodegenerative diseases. / Doctor of Philosophy / The blood-brain barrier (BBB) is a unique property of blood vessels in the Central Nervous System (CNS) different from other vessels in the body. The physically tight barrier of the BBB is formed by tight junction proteins between endothelial cells and limits paracellular diffusion. The metabolic barrier is formed by concentrations of glucose transporters that promote transport of essential nutrients to the brain. Lastly, a transport barrier limits the passage of molecules and cells across the endothelial cell layer, preventing the entry of non-essential molecules, including pathogens and immune cells found in the blood. The BBB is thought to be induced and maintained by factors secreted by nearby cells in the brain. Among these cells are astrocytes, a type of glial cell that nearly completely cover blood vessels with their processes called endfeet. This strategic positioning led the field to assume that astrocytes are responsible for generating the unique properties of the BBB. Yet little direct evidence exists to support this conclusion, and newer evidence calls into question if astrocytes are even needed for BBB functions. To test this, I used a genetic mouse model to induce death of small numbers of astrocytes in adult mice. This caused leakage of blood contents of various sizes into the brain. In addition, the tight junction proteins responsible for forming the physical BBB were disrupted. These effects remained for weeks, a feature I also found after mild concussive traumatic brain injury (cTBI). This suggests that astrocytes may have an additional function in repairing the injured BBB. Our results demonstrate an essential role for astrocytes in the maintenance of the healthy adult BBB. Maintenance and/or its repair fail after cTBI, possibly contributing to the cascade into irreversible progression to neurodegenerative diseases.
|
2 |
Nitric oxide signalling in astrocytesWang, Xuewei 06 1900 (has links)
Dans le cerveau, les astrocytes sont les cellules gliales les plus abondantes et elles jouent divers rôles, y compris le maintien des synapses tripartites et la régulation du débit sanguin cérébral (DSC). Le monoxyde d’azote (NO) est une molécule de signal endogène qui a un impact sur la régulation de l'activité synaptique et du DSC. Des études antérieures ont démontré que le NO est produit dans les cellules endothéliales et les neurones par la synthase du monoxyde d’azote endothéliale (eNOS) et neuronale (nNOS), respectivement. Cependant, la source de production de NO dans les astrocytes reste incertaine. Par conséquent, nous proposons que la voie de signalisation NOS constitutive puisse coexister dans les astrocytes et puisse être activée par différents neurotransmetteurs. L'objectif de cette thèse est d'identifier les sources et les activateurs de la production de NO dans les astrocytes corticaux de la souris.
L'identification des isoformes constitutives de NOS effectuée au moyen de la microscopie électronique et d'immunohistochimie a révélé l’expression des eNOS et nNOS dans les astrocytes. Des préparations de culture d'astrocytes et de tranches de cerveau marquées avec du diacétate de 4-amino-5-méthylamino-2',7'-difluorescéine (DAF-FM), un indicateur de NO perméable aux cellules qui devient imperméable une fois à l’intérieur ont été réalisées. Cette fonctionnalité a été mise à profit pour évaluer la production de NO exclusivement dans les astrocytes en utilisant la microscopie confocale à uni- et multi-photons. De plus, des agonistes cholinergiques ou glutamatergiques qui ont la capacité d’augmenter la concentration de Ca2+ intracellulaire peuvent induire une production du NO in vitro et ex vivo dans les astrocytes, qui est supprimée en présence de l'inhibiteur de NOS non sélectif, L-NG -Nitro-arginine. Fait intéressant, la réponse NO à l’acétylcholine était absente chez les souris eNOS-/-, tandis que l'acide trans-1-aminocyclopentane-1,3-dicarboxylique (t-ACPD) a peu affecté la production de NO chez les souris nNOS-/-. Ces résultats impliquent que les eNOS et nNOS astrocytaires peuvent être déclenchés par des cascades d'activation distinctes (cholinergique et glutamatergique métabotrope). En outre, les études sur la mobilisation cytosolique du Ca2+ indiquent l'importance du réticulum endoplasmique comme réservoir de Ca2+ pour la production de NO, et suggèrent aussi une voie de signalisation astrocytaire qui, une fois activée par le t- ACPD, provoque l'efflux de Ca2+ médié par le récepteur à la ryanodine, qui à son tour active les nNOS adjacents et conduit à la production de NO. Par ailleurs, la superfusion de préparations in vitro et ex vivo avec du N-Méthyl-D-aspartate (NMDA) a provoqué une augmentation du NO tant dans les souris eNOS-/- que nNOS-/-, ce qui indique l'implication des eNOS et nNOS astrocytaires. La production de NO a été atténuée par l'inhibition du complexe PSD-95 / nNOS ce qui suggère que le récepteur NMDA astrocytaire rend fonctionnelle la cassette de signalisation NR2B/PSD-95/nNOS.
En conclusion, nos résultats démontrent que : i) les astrocytes corticaux expriment à la fois eNOS et nNOS; ii) la nNOS cytosolique colocalise avec les récepteurs 2 et 3 de la ryanodine, alors que les nNOS membranaires colocalisent avec le récepteur NMDA contenant le NR2B; iii) la stimulation neuronale a la capacité d'induire la production de NO par les eNOS et nNOS astrocytaires par des voies de signalisation différentes; iv) l'activation des nNOS cytosoliques nécessite une activation des récepteurs à la ryanodine. Collectivement, ces données suggèrent une production de NO compartimentée et spécifique après une stimulation neuronale probablement dans le but de réguler finement et de façon polarisée les fonctions astrocytaires. Ce travail fournit un nouvel aperçu des conséquences physiologiques pour les fonctions neuronales et vasculaires et améliore notre compréhension de la fonction NO astrocytaire dans le cerveau. / In the brain, astrocytes are the most abundant glial cells and play various roles including maintenance of tripartite synapses and regulation of CBF. An endogenous signal molecule that has a potential to have an effect on regulation of both synaptic activity and CBF is nitric oxide (NO). Previous studies have demonstrated that NO is produced in endothelial cells and neurons by endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS), respectively. However, the source of NO production in astrocyte remains uncertain. Therefore, we propose that constitutive NOS signalling pathways may exist in astrocyte and can be activated by different neurotransmitters. The aim of this thesis is to identify the sources and activators of NO production in mouse cortical astrocytes.
Identification of constitutive NOS isoforms done by means of electron microscopy and immunohistochemistry revealed the expression of both eNOS and nNOS in astrocytes. All preparations were performed in astrocyte cultures and brain slice preparations labeled with 4- amino-5-methylamino-2',7'-difluorescein (DAF-FM) diacetate, a cell-permeant NO indicator that becomes cell-impermeable once inside cells. Therefore, I took advantage of this feature to evaluate NO production exclusively in astrocytes using single and multi-photon confocal microscopy. We then tested whether cholinergic and glutamatergic agonists that have the capacity to increase intracellular Ca2+ concentration can induce an increase in astrocytic NO. Both in vitro and ex vivo, NO production levels indicate that cholinergic and glutamatergic stimulations can induce astrocytic NO increases, which was abolished by the non-selective NOS inhibitor L- NG -Nitro-arginine. Moreover, the NO response to ACh was absent in eNOS-/- mice, while trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) barely affected NO production in nNOS-/- mice. These results imply that astrocytic eNOS and nNOS can be triggered discretely by distinct activation cascades (cholinergic and metabotropic glutamatergic). Furthermore, studies on cytosolic Ca2+ mobilization point out the importance of the endoplasmic reticulum (ER) Ca2+ as key in the mechanism of NO production, and suggests a signalling pathway that t-ACPD causes IP3Rs to elicit RyRs-mediated Ca2+ efflux, which in turn, activates adjacent nNOS and leads to NO production. Furthermore, superfusion of in vitro and ex vivo preparations with N-Methyl-D-aspartate (NMDA) evoked an increase in NO in eNOS-/- and nNOS-/- mice. The NO production was attenuated through removal of PSD-95/nNOS complex. This result posits that astrocytic NMDA receptor may comprise the functional NR2B/PSD- 95/nNOS signalling cassette.
In conclusion, our findings demonstrate that: i) cortical astrocytes express both eNOS and nNOS; ii) nNOS colocalizes with ryanodine receptor 2 and 3, whereas membrane nNOS colocalizes with NR2B-containing NMDA receptor; iii) neuronal stimulation has the capacity of inducing eNOS- and nNOS-produced NO in astrocytes via different activation signalling; iv) activation of cytosolic nNOS requires the activation of ryanodine receptors. Collectively, these data suggest a compartmentalized and specific NO production following neuronal stimulation probably for a fine and polarized regulation of astrocytic functions. This work provides new insight into physiological consequences for neuronal and vascular functions and ameliorates our understanding of astrocytic NO function in the brain.
|
Page generated in 0.0392 seconds