• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 40
  • 17
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 42
  • 42
  • 42
  • 34
  • 25
  • 23
  • 21
  • 18
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeting of the sarco endoplasmic reticulum calcium ATPase

Newton, Tom January 2003 (has links)
No description available.
2

The involvement of cyclic nucleotides in the regulation of endo-polygalacturonate trans-eliminase synthesis in Erwinia carotovora.

Williams, John 01 January 1976 (has links) (PDF)
No description available.
3

Fluorescent antibody labeling of endo-polygalacturomate trans-eliminase in cucumber tissue.

Hubbard, Jonathan Pierson 01 January 1974 (has links) (PDF)
No description available.
4

A study of Endo-β-mannanase in barley (Hordeum vulgare)

Scott, Lisa Marie January 2008 (has links)
Endo-β-mannanase is an endohydrolase enzyme responsible for the breakdown of mannan-containing polysaccharides common in the cell walls of many plants. The action of endo-β-mannanase in barley, its optimum temperature and pH for action, temporal and spatial localization, activity in the presence of hormones and sugars and its effect on the seed's mechanical strength were assayed. The development of a spectrophotometric assay for endo-β-mannanase detection was also trialed. The optimum temperature and pH for these experiments were found to be 37℃ and pH 7. Using these parameters, the endo-β-mannanase enzyme was found to be initially localized in the seed coat and moved through to the endosperm over time. The detected level of enzyme activity increased in the presence of gibberellic acid and glucose, or decreased when abscisic acid was added. Similar results were seen when the embryo was removed and the endosperm and seed coat were incubated in hormone- and sugar-containing media. The presence of exogenous endo-β-mannanase did not affect the mechanical strength of the seed but there was a strong correlation between increasing endo-β-mannanase activity and decreasing mechanical strength over time. The spectrophotometric assay for quantifying endo-β-mannanase in extracts showed promise but did not reach fruition due to unexplained sources of variation. The localization and regulation of endo-β-mannanase in barley were similar to those seen in other plants, such as tomato, lettuce and coffee. These findings have biotechnological applications within the brewery industry. By increasing the mobilization of reserves such as mannan, it is thought that the seedling can utilize this secondary carbohydrate source instead of, or at least supplementing, glucose which was mobilized from starch. This will theoretically reduce the starch and glucose lost during the malting period leaving a higher sugar content free for fermentation.
5

The role of cell-surface neutral metalloendopeptidases in craniofacial development

Spencer-Dene, Bradley January 1995 (has links)
No description available.
6

Human FEN1 expression and solubility patterns during DNA replication and repair

Carrier, Richard J. January 1999 (has links)
No description available.
7

Cloning and Expression of Arabidopsis endo-1,4-£]-glucanase in Pichia pastoris

Chao, Shih-hsien 05 February 2010 (has links)
In recent years. as industrialized society developed. people have made a lot of environment pollution problems owing to overusing fossil fuel, moreover. fossil fuel is going to deplete. As the result. the study of the substitute energy is promoted. Ligonocellulose (lignin, cellulose and hemicelluloses are included) are the most plentiful renewable resources in the nature, and it have high economic values which extensively use on food, paper and energy. Recent years, it is a hot issue that decomposing cellulose into the minimum unit called glucose, and further, fermenting into alcohol to generate biomass energy. This research goal is cloning Arabidopsis endo-1,4-£]-glucanase and transfer to Escherichia coli(DH5£\). Selection pPICZ£\A the success transferr DNA Fragment. Then to sequence and because of cell in pPICZ£\A have expression in Pichia. pastoris. AOX1 promoter have Mass productions Arabidopsis endo-1,4-£]-glucanase gene in Pichia pastoris. Carries on the extracellular expression by the methyl alcohol induction way. Can obtain recombinant DNA protein. However the Western blotting analysis demonstration has this enzyme active protein At4g11050 pellet Molecular weight about 89 KDa. Again by way of congo red and Dye-CMC assay activeness of the examination enzyme protein. The result discovers At4g11050 in the pellet cell activity compares with negative control has the obvious activity.
8

A study of Endo-β-mannanase in barley (Hordeum vulgare)

Scott, Lisa Marie January 2008 (has links)
Endo-β-mannanase is an endohydrolase enzyme responsible for the breakdown of mannan-containing polysaccharides common in the cell walls of many plants. The action of endo-β-mannanase in barley, its optimum temperature and pH for action, temporal and spatial localization, activity in the presence of hormones and sugars and its effect on the seed's mechanical strength were assayed. The development of a spectrophotometric assay for endo-β-mannanase detection was also trialed. The optimum temperature and pH for these experiments were found to be 37℃ and pH 7. Using these parameters, the endo-β-mannanase enzyme was found to be initially localized in the seed coat and moved through to the endosperm over time. The detected level of enzyme activity increased in the presence of gibberellic acid and glucose, or decreased when abscisic acid was added. Similar results were seen when the embryo was removed and the endosperm and seed coat were incubated in hormone- and sugar-containing media. The presence of exogenous endo-β-mannanase did not affect the mechanical strength of the seed but there was a strong correlation between increasing endo-β-mannanase activity and decreasing mechanical strength over time. The spectrophotometric assay for quantifying endo-β-mannanase in extracts showed promise but did not reach fruition due to unexplained sources of variation. The localization and regulation of endo-β-mannanase in barley were similar to those seen in other plants, such as tomato, lettuce and coffee. These findings have biotechnological applications within the brewery industry. By increasing the mobilization of reserves such as mannan, it is thought that the seedling can utilize this secondary carbohydrate source instead of, or at least supplementing, glucose which was mobilized from starch. This will theoretically reduce the starch and glucose lost during the malting period leaving a higher sugar content free for fermentation.
9

Effets de l'ozone troposphérique sur le blé tendre (Triticum aestivum L.) : caractérisation de l'endoprotéolyse vacuolaire et du niveau d'oxydation des protéines dans la feuille drapeau / Effect of tropospheric ozone on wheat (Triticum eastivum L.) : characterization of vacuolar endoproteolytic activity and level of oxidized proteins

Have, Marien 12 September 2013 (has links)
Pas de résumé en français / The present study was undertaken to investigate whether vacuolar endoproteolysis and/or protein carbonylation (measured here with a newly developed method) were functionally linked and if either of these processes or both could differentiate between ozone sensitive and tolerant wheat cultivars (cvs). Two winter wheat (Triticum aestivum L.) cvs released in 1986 (Soissons) and 2006 (Premio) were grown in the field and exposed to ambient and semi-controlled chronic ozone concentrations, from pre-anthesis to harvest, using a new linear ozone fumigation device that generates gradients of the pollutant. Grain yield and quality were more affected by the ozone treatments in the older cv Soissons that appeared to be the most sensitive. Because stomatal conductance did not differ significantly between the two cvs, differential ozone sensitivity was rather ascribed to differences in the biochemical and molecular responses between the two cvs. Ozone detrimental effects were mainly characterized by premature induction of leaf senescence, causing the shortening of the assimilation and grain-filling periods. Even though Soissons exhibited higher constitutive levels of carbonyl content in total soluble proteins, the increases in protein carbonylation, in response to the ozone treatments, were equivalent in both cvs. Thus basal levels of protein carbonyl seems a more relevant parameters to distinguish between ozone sensitive and tolerant wheat cvs than actual change in this parameter in response to ozone treatments. However, ozone induced more carbonyl groups on Rubisco large subunit (LSU) and small subunit (SSU) in Soissons and this was associated with a more pronounced decline in LSU and SSU contents and a lower Rubisco activity. Increased protein carbonyl levels and losses in total chlorophyll contents were concurrent, suggesting a link between the extent of oxidative stress and senescence development. Moreover, ozone treatments induced a stimulation of endoproteolytic activities that resulted mostly from increases in cysteine protease activities, for both cvs. Surprisingly, total proteolytic and cysteine protease activities were more enhanced in the tolerant cv, whereas elevated proteolysis is usually associated with high sensitivity to environemental stresses, like drought. Expression analysis for three genes encoding papain-like cysteine proteases showed poor correlation with total cysteine protease activities, which suggested that post-transcriptional regulation mechanisms were prevalent over transcriptional ones. Increased endoproteolytic activities were associated with increased protein carbonylation and with a decline in total soluble protein contents. Oxidized proteins could be more susceptible to proteolysis. Therefore, we suggest that ozone-induced ROS caused protein oxidation on one hand and acted as a signal that triggered senescence processes, such as enhanced proteolysis, on the other hand
10

Rôle des protéases dans la dystrophie endothéliale cornéenne de Fuchs et la transition endothélio-mésenchymateuse

Xu, Isabelle 02 February 2021 (has links)
No description available.

Page generated in 0.0424 seconds