• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Endomorphin Analog Analgesics With Low Abuse Liability: Novel Therapeutics For Pain And Opioid Abuse

January 2015 (has links)
Opioids are the most effective treatment for pain, but a host of side effects such as lethal overdoses limits their use. Endomorphins are endogenous opioid ligands that show promise as a basis for safer analgesics. Several EM analogs were developed to provide equal analgesic effects compared to morphine, with reduced respiratory depression, motor, cognitive, tolerance, and reward side effects. Tested here in reward models, morphine was compulsively self-administered and produced conditioned place preference (CPP) and locomotor sensitization after repeated injections. In sharp contrast, EM analogs were inactive in all of these models. Mechanisms for reduced tolerance and reward are proposed here. Chronic EM analog infusions produced substantially less tolerance than equi-effective doses of morphine. Morphine upregulated glial cell markers of proinflammatory activation and signaling as well as the neuronal proinflammatory peptide CGRP. By contrast, EM analogs did not produce glial or CGRP activation suggesting reduced proinflammatory side effects. In the CPP reward model, morphine produced a place preference and decreased the cell soma size of dopamine (DA) neurons in the ventral tegmental area (VTA), a critical area for reward. EM analog 4 did not produce CPP and did not change the size of these neurons in the VTA. Penetration of the blood-brain barrier (BBB) by EM analogs was confirmed by central antagonism of the antinociceptive effects of peripherally administered analogs. This work suggests that EM analogs do not promote reward behaviors and do not produce morphological changes to DA neurons in the VTA, despite BBB penetration. Therefore, the reduced tolerance and reward side effects of the analogs could be due to lack of proinflammatory effects and reduced DA neuron alterations. Finally, the subjective effects of EM analogs were tested in a drug discrimination (DD) model. During DD test sessions, rats responded on the morphine-paired lever for food when pre-injected with EM analogs, indicating that the analogs were perceived as being more similar to morphine than vehicle, despite evidence that they did not produce rewarding effects. Data shown here suggest a dual role for EM analogs in the treatment of pain and opioid addiction. / 1 / Mark R. Nilges
2

Endomorphins Decrease Heart Rate and Blood Pressure Possibly by Activating Vagal Afferents in Anesthetized Rats

Kwok, Ernest H., Dun, Nae J. 24 August 1998 (has links)
Endomorphin 1 (10, 30, 100 nmol/kg) administered intravenously (i.v.) to urethane-anesthetized rats consistently and dose-dependently lowered heart rate (HR) and mean arterial pressure (MAP); the decrease in blood pressure recovered faster as compared to the HR. The effects of endomorphin 2 were qualitatively similar. Naloxone (2 mg/kg, i.v.) completely antagonized the bradycardia and hypotension caused by endomorphin 1. Pretreatment of the rats with atropine methylnitrate, atropine sulfate (2 mg/kg, i.v.) or bilateral vagotomy nearly abolished the bradycardia and attenuated the hypotensive effect of endomorphin 1. Our studies suggest that the bradycardia effect following systemic administration of the new opioid peptide may be explained by activation of vagal afferents and the hypotensive effect may be secondary to a reduction of cardiac output and/or a direct vasodilation.
3

ENDOGENOUS OPIOID PEPTIDES AND BRAIN DEVELOPMENT: ENDOMORPHIN-1 AND NOCICEPTIN PLAY A SEX-SPECIFIC ROLE IN THE CONTROL OF OLIGODENDROCYTE MATURATION AND BRAIN MYELINATION

Mohamed, Esraa M 01 January 2019 (has links)
Myelin is an extensive cell membrane produced by oligodendrocytes to ensheath neuronal axons in the central nervous system with the primary goal of maximizing the efficiency of electrochemical impulse transmission. During brain development, oligodendrocytes differentiate into myelin forming cells in a tightly regulated process which makes them vulnerable to multiple insults. Previous results from the laboratory showed that the timing of oligodendrocyte differentiation and rat brain myelination were altered by perinatal exposure to buprenorphine and methadone, opioid analogues used for treating pregnant addicts. The mechanism by which these opioids exerted their effects involved two opioid receptors, the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOR). However, the role of these receptors and their endogenous ligands in controlling the timing of myelination under normal physiological conditions of brain development is not known. In this dissertation, we found that the endogenous MOR ligand endomorphin-1 (EM-1) acts as a strong promoter of rat pre-oligodendrocyte differentiation, but surprisingly, this effect is observed only in cells isolated from female pups. Interestingly, the stimulatory action of EM-1 was abolished upon co-incubation with the endogenous NOR ligand, nociceptin. Moreover, injections of NOR antagonist to 9-day-old female and male rat pups accelerated rat brain myelination in female rat pups with no significant changes in their male counterparts. Interestingly, the lack of major sex-dependent differences in developmental brain levels of EM-1 and nociceptin and the presence of the two receptors MOR and NOR in male and female oligodendrocytes suggested that the observed sex-specific responses may be highly dependent on critical intrinsic sex-dependent differences within these cells. Although nociceptin alone did not exert observable effects on pre-oligodendrocyte maturation, it increased the number of cells expressing Ki-67, a cell proliferation indicator, in oligodendrocyte progenitor cultures. These results suggest that nociceptin may be playing a stage specific role in oligodendrocyte development during brain maturation. The finding of critical functions of EM-1 and nociceptin in the developing female oligodendrocytes and brain myelination highlights the need for considering sexual dimorphism in the design of safer and more effective therapeutic approaches for treating opioid abuse, pain, and demyelinating disease as multiple sclerosis.
4

Endomorphin-Like Immunoreactivity in the Rat Dorsal Horn and Inhibition of Substantia Gelatinosa Neurons in Vitro

Wu, S. Y., Dun, S. L., Wright, M. T., Chang, J. K., Dun, N. J. 01 March 1999 (has links)
Endomorphin 1 and 2 are two tetrapeptides recently isolated from bovine as well as human brains and proposed to be the endogenous ligand for the μ- opiate receptor Opioid compounds expressing μ-receptor preference are generally potent analgesics. The spinal cord dorsal horn is considered to be an important site for the processing of sensory information including pain. The discovery that endomorphins produced greater analgesia in mice upon intrathecal as compared to intracerebroventricular injections raises the possibility that dorsal horn neurons may represent the anatomic site upon which endomorphins exert their analgesic effects. We report here the detection of endomorphin 2-immunoreactive fiber-like elements in superficial layers of the rat dorsal horn by immunohistochemical techniques. Whole-cell patch recordings from substantia gelatinosa neurons of cervical spinal cord slices revealed two conspicuous effects of exogenously applied endomorphin 1 and 2: (i) depression of excitatory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (ii) hyperpolarization of substantia gelatinosa neurons. These effects were reversed by the selective μ-opiate receptor antagonist β-funaltrexamine. Collectively, the detection of endomorphin-like immunoreactivity in nerve fibers of the superficial layers and the inhibitory action of endomorphins on substantia gelatinosa neurons provide further support for a potential role of these two peptides in spinal nociception.
5

Endomorphin-2 Is Not Released From Rat Spinal Dorsal Horn in Response to Intraplantar Formalin

Williams, Carole A., Ricketts, Brian A., Hua, Fang, Dun, Nae J. 06 December 2002 (has links)
Antibody coated microprobes, inserted into the spinal cord at the L4-5 level, were used to detect whether endomorphin-2 (Endo2) was released from spinal dorsal horns in anesthetized rats in response to formalin injected into the hindpaw footpads. Saline injections were used as a control and substance P (SP) was measured to verify activation of nociceptive afferent fibers. SP but not Endo2 was released during pre-stimulation periods. Saline injections did not cause the release of either Endo2 or SP from the spinal cord. Formalin injections caused an increase in Fos expression as well as a release of SP, but not Endo2 from the ipsilateral side dorsal horn in L4-5. We conclude that Endo2 does not play a role in mediating the in vivo responses to acute inflammatory nociceptive signals at the spinal level in the anesthetized rat model.
6

Targeting central nervous system active peptides to the brain via nasal delivery

Cecile Cros Unknown Date (has links)
The development of peptides as therapeutic agents has been hampered by their poor enzymatic stability and bioavailability. Many strategies, such as chemical modification, synthesis of peptidomimetics and formulation, have been employed to overcome these issues. For central nervous system (CNS) active peptides, the blood brain barrier is an added hurdle. Nasal delivery is believed to provide a direct access to the brain via the olfactory nerve, which would bypass the blood brain barrier. This route of administration, however, is dependant on the size and physico-chemical properties of the administered drug. For these reasons, three CNS active peptides were chosen as models. Leu-enkephalin, endomorphin-1 and a-conotoxin MII are three peptides that differ in their size, amino acid sequence and conformation. Using chemical modifications to improve their stability and ability to cross biological membranes, in vitro assessments of derivatives of these peptides were performed and in vivo nasal delivery was attempted on the most promising candidates. The chemical modifications consisted in the addition of lipids and/or sugars to the N- or C-terminus of the peptides. Assessment of the in vivo bioavailability after nasal administration, however, proved to be challenging. The initial method chosen for this purpose was the use of tritiated acetic anhydride which would radiolabel the peptide via acetylation at the N-terminus of the peptide derivatives. Consequently, in vitro stability and permeability of each acetylated derivatives was also studied. Acetylation of the lipidic derivatives, which formed an amide bond, proved to be beneficial for the stability of the lipidic peptides. In contrast, acetylation of the Nterminus sugar derivatives, which formed an ester bond at one or several positions of the sugar, was an unstable modification. Thus, an extraction method for the tested peptides from rat tissues was developed, and LC-MS/MS analyses were conducted to measure the level of peptide in the olfactory bulbs, brain and blood. Leu-enkephalin derivatives were all amide derivatives at the C-terminus of the peptide. The most successful Leu-enkephalinamide derivatives were C8-LeuEnk (2), C12- LeuEnk (3) and Lac-LeuEnk (8), which are the Leu-enphelinamide peptide modified with a C8 lipoamino acid, a C12 lipoamino acid and a lactose moiety respectively. They all exhibited improved permeability across Caco-2 monolayers and stability in Caco-2 cell homogenate and/or plasma. Problems of solubility encountered with C12-LeuEnk (3), however, hampered its testing in vivo after nasal administration. C8-LeuEnk (2) and Lac-LeuEnk (8) were administered intranasally to male Sprague-Dawley rats. Both peptides were found in the olfactory bulbs after 10 minutes administration (2: 49.2 ± 15.6 nM; 8: 40.6 ± 14.6 nM) while blood concentration remained low, showing that the peptide reached the olfactory bulbs directly from the nasal cavity via the olfactory nerve. Brain concentrations were 13.5 ± 10.1 nM for C8-LeuEnk (2) and 13.6 ± 6.9 nM for Lac-LeuEnk (8). These two peptides brain concentrations seemed to be high enough to exhibit analgesic effect when compared to their binding affinity in vitro. This was not statistically significant, however, due to the high standard deviations observed (Kiμ C8-LeuEnk (2) = 7.74 ± 1.15 nM; Kiμ Lac-LeuEnk (8) = 6.69 ± 1.81 nM). Endomorphin-1 was only modified at the N-terminus as previous results have shown that the activity of the peptide is strongly decreased by C-terminus modifications. The most successful modification, regarding permeability across Caco-2 monolayers and water solubility, was shown to be the addition of a lactose moiety to the N-terminus of the peptide. Lac-Endo1 (16) exhibited a permeability of 1.91 ± 0.76 x 10-6 cm/s and was soluble at the concentration used for in vivo nasal administration (2 mg/Kg, 50 μL administration). After 10 minutes administration, Lac-Endo1 (16) was found in the olfactory bulbs (418 ± 410 nM), in the brain (4.01 ± 4.61 nM) and in the blood (1.58 ± 1.85 nM). The large standard deviations observed reflect the difficulties encountered with the extraction process of this peptide. A direct transport for the nasal cavity to the olfactory bulb was observed as illustrated by the low blood concentrations. Brain concentrations, however, were too low to expect a strong analgesic effect from this compound after nasal administration (Kiμ Lac-Endo1 (16) = 11.3 ± 1.2 nM). a-Conotoxin MII is a 16 amino acid long peptide containing two disulfide bonds. The formation of these two disulfide bonds leads to low yields in the synthesis of the derivatives of this peptide. Addition of a lipidic moiety to the peptide did not seem to improve its permeability through biological membranes. This modification resulted in highly lipophilic peptides with dissolution issues in water based media such as those used in the permeability experiments. The most successful a-conotoxin MII derivative was GS-Ctx (25) which exhibited a permeability of 4.22 ± 0.53 x 10-7 cm/s across Caco-2 monolayers. This permeability, however, was too low to consider in vivo administration. In conclusion, we successfully synthesised a series of derivatives of Leu-enkephalin, endomorphin-1 and a-conotoxin MII and screened them through Caco-2 monolayers for permeability and Caco-2 cell homogenates and human plasma for stability. Three derivatives (C8-LeuEnk (2), Lac-LeuEnk (8) and Lac-Endo1 (16)) were intranasally administered and found in the olfactory bulbs 10 minutes after administration. The low blood concentrations observed show that a direct transport from the nasal cavity to the brain occurs. Thus, nasal administration could be an option for delivering to the brain low molecular weight peptides exhibiting increased stability and permeability in vitro.
7

Targeting central nervous system active peptides to the brain via nasal delivery

Cecile Cros Unknown Date (has links)
The development of peptides as therapeutic agents has been hampered by their poor enzymatic stability and bioavailability. Many strategies, such as chemical modification, synthesis of peptidomimetics and formulation, have been employed to overcome these issues. For central nervous system (CNS) active peptides, the blood brain barrier is an added hurdle. Nasal delivery is believed to provide a direct access to the brain via the olfactory nerve, which would bypass the blood brain barrier. This route of administration, however, is dependant on the size and physico-chemical properties of the administered drug. For these reasons, three CNS active peptides were chosen as models. Leu-enkephalin, endomorphin-1 and a-conotoxin MII are three peptides that differ in their size, amino acid sequence and conformation. Using chemical modifications to improve their stability and ability to cross biological membranes, in vitro assessments of derivatives of these peptides were performed and in vivo nasal delivery was attempted on the most promising candidates. The chemical modifications consisted in the addition of lipids and/or sugars to the N- or C-terminus of the peptides. Assessment of the in vivo bioavailability after nasal administration, however, proved to be challenging. The initial method chosen for this purpose was the use of tritiated acetic anhydride which would radiolabel the peptide via acetylation at the N-terminus of the peptide derivatives. Consequently, in vitro stability and permeability of each acetylated derivatives was also studied. Acetylation of the lipidic derivatives, which formed an amide bond, proved to be beneficial for the stability of the lipidic peptides. In contrast, acetylation of the Nterminus sugar derivatives, which formed an ester bond at one or several positions of the sugar, was an unstable modification. Thus, an extraction method for the tested peptides from rat tissues was developed, and LC-MS/MS analyses were conducted to measure the level of peptide in the olfactory bulbs, brain and blood. Leu-enkephalin derivatives were all amide derivatives at the C-terminus of the peptide. The most successful Leu-enkephalinamide derivatives were C8-LeuEnk (2), C12- LeuEnk (3) and Lac-LeuEnk (8), which are the Leu-enphelinamide peptide modified with a C8 lipoamino acid, a C12 lipoamino acid and a lactose moiety respectively. They all exhibited improved permeability across Caco-2 monolayers and stability in Caco-2 cell homogenate and/or plasma. Problems of solubility encountered with C12-LeuEnk (3), however, hampered its testing in vivo after nasal administration. C8-LeuEnk (2) and Lac-LeuEnk (8) were administered intranasally to male Sprague-Dawley rats. Both peptides were found in the olfactory bulbs after 10 minutes administration (2: 49.2 ± 15.6 nM; 8: 40.6 ± 14.6 nM) while blood concentration remained low, showing that the peptide reached the olfactory bulbs directly from the nasal cavity via the olfactory nerve. Brain concentrations were 13.5 ± 10.1 nM for C8-LeuEnk (2) and 13.6 ± 6.9 nM for Lac-LeuEnk (8). These two peptides brain concentrations seemed to be high enough to exhibit analgesic effect when compared to their binding affinity in vitro. This was not statistically significant, however, due to the high standard deviations observed (Kiμ C8-LeuEnk (2) = 7.74 ± 1.15 nM; Kiμ Lac-LeuEnk (8) = 6.69 ± 1.81 nM). Endomorphin-1 was only modified at the N-terminus as previous results have shown that the activity of the peptide is strongly decreased by C-terminus modifications. The most successful modification, regarding permeability across Caco-2 monolayers and water solubility, was shown to be the addition of a lactose moiety to the N-terminus of the peptide. Lac-Endo1 (16) exhibited a permeability of 1.91 ± 0.76 x 10-6 cm/s and was soluble at the concentration used for in vivo nasal administration (2 mg/Kg, 50 μL administration). After 10 minutes administration, Lac-Endo1 (16) was found in the olfactory bulbs (418 ± 410 nM), in the brain (4.01 ± 4.61 nM) and in the blood (1.58 ± 1.85 nM). The large standard deviations observed reflect the difficulties encountered with the extraction process of this peptide. A direct transport for the nasal cavity to the olfactory bulb was observed as illustrated by the low blood concentrations. Brain concentrations, however, were too low to expect a strong analgesic effect from this compound after nasal administration (Kiμ Lac-Endo1 (16) = 11.3 ± 1.2 nM). a-Conotoxin MII is a 16 amino acid long peptide containing two disulfide bonds. The formation of these two disulfide bonds leads to low yields in the synthesis of the derivatives of this peptide. Addition of a lipidic moiety to the peptide did not seem to improve its permeability through biological membranes. This modification resulted in highly lipophilic peptides with dissolution issues in water based media such as those used in the permeability experiments. The most successful a-conotoxin MII derivative was GS-Ctx (25) which exhibited a permeability of 4.22 ± 0.53 x 10-7 cm/s across Caco-2 monolayers. This permeability, however, was too low to consider in vivo administration. In conclusion, we successfully synthesised a series of derivatives of Leu-enkephalin, endomorphin-1 and a-conotoxin MII and screened them through Caco-2 monolayers for permeability and Caco-2 cell homogenates and human plasma for stability. Three derivatives (C8-LeuEnk (2), Lac-LeuEnk (8) and Lac-Endo1 (16)) were intranasally administered and found in the olfactory bulbs 10 minutes after administration. The low blood concentrations observed show that a direct transport from the nasal cavity to the brain occurs. Thus, nasal administration could be an option for delivering to the brain low molecular weight peptides exhibiting increased stability and permeability in vitro.
8

Release of Endomorphin-2 Like Substances From the Rat Spinal Cord

Williams, C. A., Wu, S. Y., Dun, S. L., Kwok, E. H., Dun, N. J. 24 September 1999 (has links)
Release of endomorphin (ENDO)-2 like substances from the dorsal horn of the isolated rat spinal cord was measured by the immobilized-antibody microprobe technique. Spinal cords were removed from anesthetized 4-6 week old rats and superfused with oxygenated Krebs solution at room temperature. Glass microprobes coated with ENDO-2 antibodies were inserted into the dorsal horn of the lumbar spinal cord 1.5 mm lateral to the midline to a depth 2.5 mm below the dorsal surface of the cord. Each probe remained in situ for 10 min periods before, during and after electrical stimulation applied to the dorsal root entry zone of the same spinal segment. There was no detectable basal release of immunoreactive endomorphin-2 like substance (irENDO) from the dorsal horns during the pre-stimulation, nor following the stimulation period. A significant release of irENDO was measured during the electrical stimulation. These results provide the first evidence of a irEndo release that is correlated spatially with the dorsal horn laminae I and II where ENDO-2-immunoreactive fibers are concentrated in the dorsal horn in response to electrical activation of primary afferent fibers.

Page generated in 0.0346 seconds