• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Endomorphin-Like Immunoreactivity in the Rat Dorsal Horn and Inhibition of Substantia Gelatinosa Neurons in Vitro

Wu, S. Y., Dun, S. L., Wright, M. T., Chang, J. K., Dun, N. J. 01 March 1999 (has links)
Endomorphin 1 and 2 are two tetrapeptides recently isolated from bovine as well as human brains and proposed to be the endogenous ligand for the μ- opiate receptor Opioid compounds expressing μ-receptor preference are generally potent analgesics. The spinal cord dorsal horn is considered to be an important site for the processing of sensory information including pain. The discovery that endomorphins produced greater analgesia in mice upon intrathecal as compared to intracerebroventricular injections raises the possibility that dorsal horn neurons may represent the anatomic site upon which endomorphins exert their analgesic effects. We report here the detection of endomorphin 2-immunoreactive fiber-like elements in superficial layers of the rat dorsal horn by immunohistochemical techniques. Whole-cell patch recordings from substantia gelatinosa neurons of cervical spinal cord slices revealed two conspicuous effects of exogenously applied endomorphin 1 and 2: (i) depression of excitatory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (ii) hyperpolarization of substantia gelatinosa neurons. These effects were reversed by the selective μ-opiate receptor antagonist β-funaltrexamine. Collectively, the detection of endomorphin-like immunoreactivity in nerve fibers of the superficial layers and the inhibitory action of endomorphins on substantia gelatinosa neurons provide further support for a potential role of these two peptides in spinal nociception.
2

Nociceptin-Like Immunoreactivity in the Rat Dorsal Horn and Inhibition of Substantia Gelatinosa Neurons

Lai, C. C., Wu, S. Y., Dun, S. L., Dun, N. J. 10 October 1997 (has links)
Nociceptin, also referred to as orphanin FQ, is believed to be the endogenous ligand for the ORL1. Nociceptin, when injected intracerebroventricularly to mice, produced hyperalgesia in behavioral tests. Recent studies have demonstrated the presence of ORL1 transcript in the spinal cord, and ORL1-like immunoreactivity has been localized to nerve fibers and somata throughout the spinal cord. Here, we report the localization of nociceptin-like immunoreactivity to fiber-like elements of the superficial layers of the rat dorsal horn by immunohistochemical techniques. Whole-cell recordings from substantia gelatinosa neurons in transverse lumbar spinal cord slices of 22-26-day-old rats showed that exogenous nociceptin at low concentrations (100-300 nM) depressed excitatory postsynaptic potentials evoked by stimulation of dorsal rootlets without causing an appreciable change of resting membrane potentials and glutamate- evoked depolarizations. At a concentration of 1 μM, nociceptin hyperpolarized substantia gelatinosa neurons and suppressed spike discharges. The hyperpolarizing and synaptic depressant action of nociceptin was not reversed by the known opioid receptor antagonist naloxone (1 μM). Our result provides evidence that nociceptin-like peptide is concentrated in nerve fibers of the rat dorsal horn and that it may serve as an inhibitory transmitter within the substantia gelatinosa.

Page generated in 0.1327 seconds