• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Endosymbiotic prevalence and reproductive manipulation of the spider Mermessus fradeorum

Curry, Meghan M. 01 January 2013 (has links)
Spiders are host to a plethora of heritable endosymbiotic bacteria. Broad-taxa screening studies indicate that endosymbionts are particularly common among spiders, however, little is known about how these bacteria affect their spider hosts. In insects these bacteria ensure vertical transmission by either conveying a benefit to the host or manipulating host reproduction to eliminate males that serve as evolutionary dead-ends for maternally-inherited bacteria. Common modes of reproductive manipulation include parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Screening an assemblage of Mermessus genus spiders, I detected a high frequency and diversity of endosymbiont infection. Within a single species, M. fradeorum, I detected three endosymbionts in multiple combinations. Rearing two natural infection types of M. fradeorum demonstrated two distinct endosymbiotic reproductive manipulations. Mothers infected with Rickettsia and Wolbachia produced extremely female-biased offspring, and antibiotic elimination of the symbionts successfully restored the sex ratio to the expected 1:1 in subsequent generations. A two-way factorial mating assay detected strong cytoplasmic incompatibility induced by a different strain of Wolbachia: cured females mated with infected males produced 70% fewer offspring than all other pairings. These results show that M. fradeorum is subject to multiple layers of reproductive manipulation that likely drive host evolution and ecology.

Page generated in 0.0728 seconds