• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionamiento de una central termosolar de colectores cilíndrico-parabólicos para producir 5mw en el distrito de Olmos

Gómez Chavarry, Billy January 2017 (has links)
Este proyecto consiste en el diseño de una central termosolar de colectores cilíndricos-parabólicos para producir 5MW en el distrito de Olmos. Como un prototipo de central con el propósito de determinar sus costos de generación junto con los beneficios ambientales asociados, para su posterior ampliación dentro del distrito de Olmos. Se tomaron criterios para la selección de la mejor opción tecnológica y de los principales componentes de la central de acuerdo a las condiciones geográficas y meteorológicas de la zona. Se van a tratar aspectos como el diseño de la planta solar, que implica el dimensionamiento de los espejos de los CCPs, las estructuras de soporte, la elección del fluido conductor (Sales fundidas o aceite sintético), así como los parámetros y especificaciones de los equipos que se van a utilizar en la central termosolar. Para determinar la viabilidad del proyecto se abordarán aspectos económicos y de rentabilidad como inversión necesaria. Por último, se han expuesto las conclusiones de los cálculos realizados de la central termosolar. / Tesis
2

Estudio técnico de la carga térmica para la implementación de un sistema de aire acondicionado

Castillo Ramirez, Carlos Brucelee January 2016 (has links)
Publicación a texto completo no autorizada por el autor / Realiza un estudio técnico de la energía térmica acondicionada para la climatización de una oficina. Calcula el calor total, calor sensible y el factor de calor sensible mediante el método del cálculo de los coeficientes globales de transferencia de calor.
3

Dimensionamiento de una central termosolar de colectores cilíndrico-parabólicos para producir 5mw en el distrito de Olmos

Gómez Chavarry, Billy January 2017 (has links)
Este proyecto consiste en el diseño de una central termosolar de colectores cilíndricos-parabólicos para producir 5MW en el distrito de Olmos. Como un prototipo de central con el propósito de determinar sus costos de generación junto con los beneficios ambientales asociados, para su posterior ampliación dentro del distrito de Olmos. Se tomaron criterios para la selección de la mejor opción tecnológica y de los principales componentes de la central de acuerdo a las condiciones geográficas y meteorológicas de la zona. Se van a tratar aspectos como el diseño de la planta solar, que implica el dimensionamiento de los espejos de los CCPs, las estructuras de soporte, la elección del fluido conductor (Sales fundidas o aceite sintético), así como los parámetros y especificaciones de los equipos que se van a utilizar en la central termosolar. Para determinar la viabilidad del proyecto se abordarán aspectos económicos y de rentabilidad como inversión necesaria. Por último, se han expuesto las conclusiones de los cálculos realizados de la central termosolar.
4

MODELADO Y ANÁLISIS DE UN DEPÓSITO DE ALMACENAMIENTO LATENTE DE ENERGÍA TÉRMICA CON INTERCAMBIADOR DE TIPO SERPENTÍN

Biosca Taronger, Xavier 05 April 2016 (has links)
[EN] This PhD Thesis has been developed at the Instituto de Ingeniería Energética of the Universitat Politècnica de València, within the group SIMES dedicated to the research on thermal systems. The group SIMES has developed a research project on latent heat storage of thermal energy in which different materials have been studied in order to analyse their performance as phase change materials for the latent heat storage. The aim of this thesis is the development of two models in MATLAB for the simulation of the performance of latent heat thermal energy storage systems in their processes of charge and discharge, in particular for cold storage. The development of these models allows for a deep understanding of the mechanisms that are governing the performance of this systems. The need of two different models is due to the different physical nature of the studied phase change materials: water and paraffin RT8. Each material determines a different performance in the phase change process. While water presents two differentiated phases and separated by an interphase, the paraffin RT8 experiences the solid-liquid phase change in a temperature interval, within a mushy state which is not completely liquid nor solid. Consequently, it was necessary to develop of a moving-boundary model for the simulation of the tanks with ice-water, and another enthalpy model for the simulation of tanks with paraffin RT8 as PCM. Finally, the developed models have helped analyse the performance of both materials in different latent heat storage applications, and determine the suitable system for each case. The models are useful also as a tool for the design and sizing of the system, to study their operation and carry out techno-economical analysis of different configurations. / [ES] La presente tesis doctoral ha sido desarrollada en el Instituto de Ingeniería Energética de la Universitat Politècnica de València, dentro del grupo SIMES dedicado a la investigación de sistemas térmicos. El grupo SIMES ha desarrollado un proyecto de investigación de almacenamiento latente de energía térmica en el que se han estudiado diferentes materiales para analizar su comportamiento como materiales de cambio de fase para el almacenamiento latente. El objetivo principal de esta tesis es el desarrollo de dos modelos en MATLAB para la simulación del comportamiento de depósitos de almacenamiento latente de energía térmica en sus procesos de carga y descarga, concretamente para la aplicación de almacenamiento de frío. El desarrollo de estos modelos permite conocer en profundidad los mecanismos que determinan el comportamiento de estos sistemas. El hecho de desarrollar dos modelos distintos se debe a la distinta naturaleza física de los materiales de cambio de fase estudiados: el agua y la parafina RT8. Dicha naturaleza determina un comportamiento distinto en sus procesos de cambio de fase. Mientras el agua presenta dos fases diferenciadas y separadas por una interfase, la parafina RT8 experimenta el cambio de fase sólido-líquido en un intervalo de temperatura, en el que el estado del material es un estado esponjoso que no resulta ser completamente sólido ni líquido. Por este motivo ha sido necesario el desarrollo de un modelo de frontera móvil para la simulación de los depósitos con agua-hielo, y otro modelo entálpico para la simulación de depósitos con la parafina RT8 como PCM. Finalmente, los modelos desarrollados permiten analizar el comportamiento de ambos materiales como almacenamiento latente en distintas aplicaciones, y determinar el sistema más adecuado en cada caso. Los modelos sirven también de herramienta de diseño y dimensionamiento del sistema, de su operación y para la realización de un estudio energético-económico y comparación de los resultados obtenidos con ambas configuraciones. / [CA] La present tesis doctoral ha sigut desenvolupada a l'Instituto de Ingeniería Energética de la Universitat Politècnica de València, dins del grup SIMES dedicat a la investigació de sistemes tèrmics. El grup SIMES ha desenvolupat un projecte de investigació d'emmagatzematge latent d'energia tèrmica en què s'han estudiat diferents materials per a analitzar el seu comportament com a materials de canvi de fase per a l'emmagatzematge latent. L'objectiu principal d'aquesta tesis és el desenvolupament de dos models en MATLAB per a la simulació del comportament de dipòsits d'emmagatzematge latent d'energia tèrmica en els seus processos de càrrega i descàrrega, concretament per a l'aplicació d'emmagatzematge de fred. El desenvolupament d'aquests models permet conèixer en profunditat els mecanismes que determinen el comportament d'aquests sistemes. El fet de desenvolupar dos models distints és degut a la distinta naturalesa física dels materials de canvi de fase estudiats: l'aigua i la parafina RT8. Aquesta naturalesa determina un comportament distint en els seus processos de canvi de fase. Mentre l'aigua presenta dos fases diferenciades i separades per una interfase, la parafina RT8 experimenta el canvi de fase sòlid-líquid en un interval de temperatura, en el que l'estat del material és un estat esponjós que no resulta ser completament sòlid ni líquid. Per aquest motiu ha sigut necessari el desenvolupament d'un model de frontera mòbil per a la simulació dels dipòsits amb aigua-gel, i un altre model entàlpic per a la simulació de dipòsits amb la parafina RT8 com a PCM. Finalment, els models desenvolupats permeten analitzar el comportament d'ambdós materials com a emmagatzematge latent en distintes aplicacions, i determinar el sistema més adequat en cada cas. Els models serveixen també de ferramenta de disseny i dimensionament del sistema, de la seua operació i per a la realització d'un estudi energètic-econòmic i comparació dels resultats obtinguts amb ambdues configuracions. / Biosca Taronger, X. (2016). MODELADO Y ANÁLISIS DE UN DEPÓSITO DE ALMACENAMIENTO LATENTE DE ENERGÍA TÉRMICA CON INTERCAMBIADOR DE TIPO SERPENTÍN [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62163
5

Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES)

Javadi, Hossein 23 March 2024 (has links)
Tesis por compendio / [ES] El sistema de bomba de calor geotérmica (GSHP) es una tecnología prometedora para utilizar la energía geotérmica somera (EGS). En este sistema, un intercambiador enterrado de calor de perforación (BHE) desempeña un papel principal e influye directamente en el coeficiente de rendimiento estacional (SCOP) de este sistema geotérmico poco profundo. Se han llevado a cabo diferentes estudios para mejorar el rendimiento del BHE, incluyendo el uso de materiales avanzados para el plástico de las tuberías, uso de fluido caloportador (o de transferencia de calor) y de relleno/grouting, de mayor transferencia de calor, diseño de nuevas geometrías, y la optimización del BHE para ser utilizado como sistemas de almacenamiento de energía térmica (BTES). Los costes de perforación, el consumo eléctrico de las bombas de calor y la resistencia térmica de las perforaciones pueden reducirse utilizando materiales con propiedades termofísicas adecuadas, como los nanofluidos y los materiales de almacenamiento térmico. De este modo, no sólo se produce una transferencia de calor más significativa entre el fluido caloportador, el relleno y el terreno, sino que también se reduce el efecto térmico sobre el entorno. El fluido de transferencia de calor es uno de los factores de optimización de la BHE que se utilizará para el almacenamiento de energía térmica (TES). Una mayor conductividad térmica en el fluido de transferencia de calor mejora la eficacia de la transferencia de calor entre el fluido y los materiales alrededor, lo que lleva a alcanzar con mayor rapidez la temperatura de cambio de fase en los materiales de almacenamiento. Cuando se usa un fluido de transferencia de calor con una conductividad térmica superior, la temperatura del material de almacenamiento de calor experimenta fluctuaciones más rápidas, lo que reduce significativamente la duración necesaria para un cambio de fase completo. Además, usar materiales de cambio de fase (PCM) para almacenar calor en lugar del relleno convencional permite aprovechar el BHE como sistema BTES. Además de disminuir considerablemente la profundidad de perforación necesaria, el sistema BTES puede almacenar y liberar energía diaria y estacionalmente para reducir la carga durante las horas punta. Sin embargo, hay un vacío notable en la bibliografía sobre la exploración y aplicación de nuevos materiales de almacenamiento de calor y fluidos de transferencia de calor en las BHE para hacerlas aptas para fines de BTES. Aunque se han aplicado diversas innovaciones para mejorar el rendimiento de los BHE, como el uso de materiales plásticos avanzados y la optimización del diseño, la mayor parte de la investigación se ha centrado en el uso convencional de los BHE. Debería prestarse más atención a las ventajas potenciales del aprovechamiento de los intercambiadores de calor mediante la aplicación de nanofluidos y PCM como fluidos de transferencia de calor y medios de almacenamiento de calor, respectivamente. Como ya se ha mencionado, estos materiales poseen propiedades termofísicas superiores que pueden dar lugar a una transferencia de calor más eficiente, una reducción de los costes de perforación, un menor consumo de electricidad en las bombas de calor y una disminución de la resistencia térmica de la perforación. Esta laguna en la investigación hace necesaria una investigación en profundidad para determinar la viabilidad y factibilidad de la aplicación de estos materiales avanzados en las BHE, facilitando en última instancia su transformación en sistemas BTES fiables. Por lo tanto, los principales objetivos de esta tesis doctoral son estudiar experimental y numéricamente los impactos del uso de materiales avanzados para el fluido caloportador y el relleno/grouting tales como nanofluidos y PCMs, en el rendimiento del BHE como sistemas BTES. El estudio pretende seleccionar los materiales más favorables, convirtiéndose en una referencia práctica y fiable para futuros proyectos y sectores industriales. / [CA] El sistema de bomba de calor geotèrmica (GSHP, en anglès) és una tecnologia prometedora per a utilitzar l'energia geotèrmica succinta (EGS). En este sistema, un bescanviador enterrat de calor de perforació (BHE, en anglès) exercix un paper principal i influïx directament en el coeficient de rendiment estacional (SCOP) d'este sistema geotèrmic poc profund. S'han dut a terme diferents estudis per a millorar el rendiment del *BHE, incloent-hi l'ús de materials avançats per al plàstic de les canonades, ús de fluid termòfor (o de transferència de calor) i de grouting, de major transferència de calor, disseny de noves geometries, i l'optimització del BHE per a ser utilitzat com a sistemes d'emmagatzematge d'energia tèrmica (BTES, en anglès). Els costos de perforació, el consum elèctric de les bombes de calor i la resistència tèrmica de les perforacions poden reduir-se utilitzant materials amb propietats termo-físiques adequades, com els nanofluids i els materials d'emmagatzematge tèrmic. D'esta manera, no sols es produïx una transferència de calor més significativa entre el fluid termòfor, el farciment i el terreny, sinó que també es reduïx l'efecte tèrmic sobre l'entorn. El fluid de transferència de calor és un dels factors d'optimització de la *BHE que s'utilitzarà per a l'emmagatzematge d'energia tèrmica (*TES). Una major conductivitat tèrmica en el fluid de transferència de calor millora l'eficàcia de la transferència de calor entre el fluid i els materials al voltant, la qual cosa porta a aconseguir amb major rapidesa la temperatura de canvi de fase en els materials d'emmagatzematge. Quan s'usa un fluid de transferència de calor amb una conductivitat tèrmica superior, la temperatura del material d'emmagatzematge de calor experimenta fluctuacions més ràpides, la qual cosa reduïx significativament la duració necessària per a un canvi de fase complet. A més, usar materials de canvi de fase (PCM, en anglès) per a emmagatzemar calor en lloc del farciment convencional permet aprofitar el BHE com a sistema BTES. A més de disminuir considerablement la profunditat de perforació necessària, el sistema BTES pot emmagatzemar i alliberar energia diària i estacionalment per a reduir la càrrega durant les hores punta. No obstant això, hi ha un buit notable en la bibliografia sobre l'exploració i aplicació de nous materials d'emmagatzematge de calor i fluids de transferència de calor en les BHE per a fer-les aptes per a fins de BTES. Encara que s'han aplicat diverses innovacions per a millorar el rendiment dels BHE, com l'ús de materials plàstics avançats i l'optimització del disseny, la major part de la investigació s'ha centrat en l'ús convencional dels BHE. Hauria de prestar-se més atenció als avantatges potencials de l'aprofitament dels bescanviadors de calor mitjançant l'aplicació de nanofluids i PCM com a fluids de transferència de calor i mitjans d'emmagatzematge de calor, respectivament. Com ja s'ha esmentat, estos materials posseïxen propietats termo-físiques superiors que poden donar lloc a una transferència de calor més eficient, una reducció dels costos de perforació, un menor consum d'electricitat en les bombes de calor i una disminució de la resistència tèrmica de la perforació. Esta llacuna en la investigació fa necessària una investigació en profunditat per a determinar la viabilitat i factibilitat de l'aplicació d'estos materials avançats en les BHE, facilitant en última instància la seua transformació en sistemes BTES fiables. Per tant, els principals objectius d'esta tesi doctoral són estudiar experimental i numèricament els impactes de l'ús de materials avançats per al fluid termòfor i el grouting com ara nanofluids i PCMs, en el rendiment del BHE com a sistemes BTES. L'estudi pretén seleccionar els materials més favorables, convertint-se en una referència pràctica i fiable per a futurs projectes i sectors industrials. / [EN] Due to severe environmental pollution and worldwide energy deficiency, exploiting renewable energies has become more critical than ever. Shallow geothermal energy (SGE) is considered a sustainable and renewable energy source with significant advantages in space heating and cooling, industrial applications, greenhouses, electricity production, agriculture industry devices, and hot water production, among others. The ground source heat pump (GSHP) system is a promising technology for utilizing SGE. In this system, a borehole heat exchanger (BHE) plays an important role and directly influences the coefficient of performance (COP) of this shallow geothermal system. Different approaches have been carried out to enhance the performance of the BHE, including using advanced materials for pipes, heat transfer fluids, and backfill/grout, designing new geometries, and optimizing the BHE to be used as borehole thermal energy storage (BTES) systems. Drilling costs, heat pump electricity consumption, and borehole thermal resistance can be reduced using materials with appropriate thermo-physical properties like nanofluids and heat storage materials. This results in not only a more significant heat transfer between the heat transfer fluid, the backfill/grout, and the soil but also lessens the thermal effect on the surroundings. Heat transfer fluid is one of the factors in optimizing the BHE to be used for thermal energy storage (TES). Increased thermal conductivity in the heat transfer fluid enhances heat transfer efficiency between the fluid and the heat storage materials, leading to a more rapid attainment of the phase change temperature in the storage materials. In essence, when employing a heat transfer fluid with superior thermal conductivity, the temperature of the heat storage material experiences quicker fluctuations, resulting in a significant reduction in the duration required for a complete phase change. Moreover, the use of phase change material (PCM) as a heat storage medium instead of conventional backfill/grout enables the BHE to be beneficial and applicable as a BTES system. In addition to decreasing the required borehole depth considerably, the BTES system can store and release energy daily and seasonally to reduce the load during peak hours. However, there is a notable gap in the literature concerning exploring and applying new heat storage and heat transfer fluid materials in BHEs to render them suitable for TES purposes. While various approaches have been undertaken to enhance BHE performance, including using advanced materials and design optimizations, most research has concentrated on the conventional goal of BHEs. More attention should be given to the potential advantages of these heat exchangers by applying nanofluids and PCMs as heat transfer fluids and heat storage media, respectively. As mentioned above, these materials possess superior thermo-physical properties that can lead to more efficient heat transfer, reduced drilling costs, lower electricity consumption in heat pumps, and diminished borehole thermal resistance. This research gap necessitates an in-depth investigation to determine the feasibility and practicality of implementing these advanced materials in BHEs, ultimately facilitating their transformation into reliable BTES systems. The outcomes of such research endeavors hold the promise of addressing environmental concerns and global energy deficiencies by advancing the utilization of renewable energy sources like SGE sustainably and effectively. Therefore, the main objectives of this doctoral dissertation are to study experimentally and numerically the impacts of using advanced materials for heat transfer fluid and backfill/grout, such as nanofluids and PCMs, on the performance of the BHE as BTES systems. The study aims to select the most favorable materials, making it a practical and reliable reference for future projects and industry sectors. / This research has received funding from the European Union’s Horizon 2020 Research and Innovation program named GEOCOND under grant agreement No [727583]. / Javadi, H. (2024). Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203144 / Compendio
6

Fresnel Solar Collector System for Indirect Steam Generation for Industrial Processes with Thermal Energy Storage

David Hernández, Marco Antonio 28 November 2025 (has links)
[ES] El sector industrial es responsable de una cantidad significativa de emisiones anuales de carbono, en gran parte debido a su elevado consumo de energía y a su dependencia de los combustibles fósiles para la producción de calor. Por tanto, es evidente que la utilización de fuentes de calor alternativas y renovables, como los colectores solares de concentración, representa una oportunidad prometedora para la descarbonización de este sector. Sin embargo, los sistemas de colectores solares dependen del recurso solar, que es una fuente de energía intermitente. Por ello, es necesario disponer de un sistema de almacenamiento de energía térmica (AET) que facilite el almacenamiento de la energía sobrante y su posterior utilización cuando sea necesario, garantizando así un suministro de calor más constante. Con el fin de demostrar la viabilidad de los sistemas solares térmicos para aplicaciones industriales, la empresa Solatom CSP instaló un campo solar experimental dentro del proyecto SOLPINVAP. Está compuesto por una serie de colectores modulares lineales Fresnel (CLF) y un kettle reboiler, que es un tipo de intercambiador de calor de carcasa y tubos. Esta tesis analiza el rendimiento del sistema en modo de generación indirecta de vapor. En este modo, el calor se absorbe en el interior de los tubos absorbedores mediante un fluido caloportador y se transfiere a la carcasa del kettle reboiler, donde se produce vapor. Además, esta tesis examina los circuitos hidráulicos y sus componentes del campo solar experimental, así como el sistema de control y el sistema de monitorización asociados al mismo. Además, se presenta el desarrollo de un modelo de sistema CLF de calor solar para procesos industriales (CSPI). El modelo se desarrolló en el entorno MATLAB orientado a objetos. Se desarrolló un modelo 3D del campo solar CLF dentro del entorno Tonatiuh (un software de trazado de rayos), lo que permitió estimar la eficiencia óptica máxima y los correspondientes modificadores del ángulo de incidencia de los colectores Fresnel. Los resultados demuestran que el calor absorbido en los colectores presenta una incertidumbre del 12%, mientras que el calor generado presenta una incertidumbre del 3%. Para reducir la incertidumbre inherente al cálculo del calor absorbido y generado, se realizó un estudio para seleccionar sensores y equipos de monitorización más precisos. Además, se realizó un trabajo de campo para instalar los equipos seleccionados, más precisos, en el campo solar SOLPINVAP. Los resultados de la monitorización demuestran que la incertidumbre en el calor absorbido se redujo en un 79% como consecuencia de la mejora en la instrumentación de medida. Como parte de este proyecto de tesis, se realizó una estancia de investigación en el Departamento de Ingeniería de Mecánica y Metalúrgica de la Pontificia Universidad Católica de Chile, en Santiago. El equipo de investigación anfitrión ha estado investigando la posible aplicación de AET de lecho compacto sólido con escoria de cobre, un subproducto del proceso pirometalúrgico del mineral de cobre, como medio de almacenamiento. Además, el equipo de investigación ha desarrollado un modelo matemático que simula el proceso termodinámico y de transferencia de calor asociado al flujo de aire y a las partículas sólidas. En consecuencia, el modelo del sistema de AET de lecho compacto sólido se ha integrado en el modelo del sistema CSPI para examinar su efecto en el rendimiento del sistema. Además, esta tesis examina la dinámica entre las temperaturas de los distintos componentes del sistema. En consecuencia, esta tesis presenta un diseño para un sistema integrado CSPI con AET de lecho compacto sólido. Los resultados demuestran que el sistema con el AET de lecho compacto sólido es capaz de generar un 18% más de energía que el sistema sin el AET de lecho compacto sólido. / [CA] El sector industrial és responsable d'una quantitat significativa d'emissions anuals de carboni, en gran part a causa del seu alt consum d'energia i la dependència dels combustibles fòssils per a la producció de calor. Per tant, és evident que la utilització de fonts de calor alternatives i renovables, com la concentració de col·lectors solars, representa una oportunitat prometedora per a la descarbonització d'aquest sector. No obstant això, els sistemes de col·lectors solars depenen del recurs solar, que és una font d'energia intermitent. Per tant, és necessari disposar d'un sistema d'emmagatzematge d'energia tèrmica (TES) per facilitar l'emmagatzematge de l'energia sobrant i la seva posterior utilització quan sigui necessari, assegurant així un subministrament de calor més consistent. Per tal de demostrar la viabilitat dels sistemes solars tèrmics per a aplicacions industrials, l'empresa Solatom CSP va instal·lar un camp solar experimental dins del projecte SOLPINVAP. Comprèn una sèrie de col·lectors lineals modulars de Fresnel i un Kettle Reboiler, que és un tipus d'intercanviador de calor de carcassa i tubs. Aquesta tesi analitza el rendiment del sistema en mode de generació de vapor indirecte. En aquest mode, la calor s'absorbeix a l'interior dels tubs absorbents mitjançant l'ús d'un fluid de transferència de calor, i es transfereix a la capa del Reboiler, on es produeix vapor. A més, aquesta tesi examina els circuits hidràulics i els seus components del camp solar experimental, així com el sistema de control i el sistema de monitoratge associat a aquest. A més, es presenta el desenvolupament d'un model de sistema LFC per a processos industrials (SHIP). El model es va desenvolupar dins de l'entorn MATLAB orientat a objectes. Es va desenvolupar un model 3D del camp solar LFC dins de l'entorn Tonatiuh (un programari de rastreig de raigs), que permet estimar l'eficiència òptica màxima i els corresponents modificadors d'angle d'incidència dels col·lectors Fresnel. Els resultats demostren que la calor absorbida en els col·lectors mostra una incertesa del 12%, mentre que la calor generada mostra una incertesa del 3%. Per tal de reduir la incertesa inherent al càlcul de la calor absorbida i generada, es va realitzar un estudi per seleccionar sensors i equips de monitoratge més precisos. A més, es va realitzar un treball de camp per a instal·lar els equips seleccionats i més precisos en el camp solar SOLPINVAP. Els resultats de seguiment demostren que la incertesa en la calor absorbida es va reduir en un 79% com a conseqüència de la millora en la instrumentació de mesura. En el marc d'aquest projecte de tesi, es va realitzar una estada de recerca al Departament d'Enginyeria de Mecànica i Metalúrgica de la Pontifícia Universitat Catòlica de Xile, a Santiago. L'equip d'investigació amfitrió ha investigat la potencial aplicació de PBTES sòlids amb escòria de coure, un subproducte del procés pirometal·lúrgic del mineral de coure, com a medi d'emmagatzematge. A més, l'equip d'investigació ha desenvolupat un model matemàtic que simula el procés de transferència de calor i termodinàmica associat al flux d'aire i les partícules sòlides. En conseqüència, el model del sistema PBTES s'ha integrat en el model del sistema SHIP per a l'examen del seu efecte sobre el rendiment del sistema. A més, aquesta tesi examina la dinàmica entre les temperatures dels diferents components del sistema. En conseqüència, aquesta tesi presenta un disseny per a un sistema solar integrat amb sistema PBTES. Els resultats demostren que el sistema amb el PBTES és capaç de generar un 18% més d'energia que el sistema sense el PBTES. A més, es va dur a terme una anàlisi tecnoeconòmica utilitzant el sistema SHIP dissenyat amb PBTES. / [EN] The industry sector is responsible for a significant amount of annual carbon emissions, largely due to its high energy consumption and reliance on fossil fuels for heat production. It is therefore evident that the utilisation of alternative and renewable heat sources, such as concentrating solar collectors, represents a promising opportunity for the decarbonisation of this sector. Nevertheless, solar collector systems are dependent on the solar resource, which is an intermittent source of energy. It is therefore necessary to have a thermal energy storage (TES) system to facilitate the storage of surplus energy and its subsequent utilisation when required, thereby ensuring a more consistent heat supply. In order to demonstrate the viability of solar thermal systems for industrial applications, the company Solatom CSP installed an experimental solar field within the SOLPINVAP project. It comprises a series of modular linear Fresnel collectors (LFC) and a kettle reboiler, which is a type of shell and tube heat exchanger. This thesis analyses the performance of the system in Indirect Steam Generation mode. In this mode, heat is absorbed inside the absorber tubes by using a heat transfer fluid, and transferred to the shell of the kettle reboiler, where steam is produced. Additionally, this thesis examines the hydraulic circuits and their components of the experimental solar field, as well as the control system and the monitoring system associated with it. Moreover, it is presented the development of a LFC solar heat for industrial process (SHIP) system model. The model was developed within the object-oriented MATLAB environment. A 3D model of the LFC solar field was developed within the Tonatiuh environment (a ray-tracing software), allowing for an estimation of the peak optical efficiency and the corresponding incidence angle modifiers of the Fresnel collectors. . The results demonstrate that the absorbed heat in the collectors exhibits an uncertainty of 12%, while the generated heat exhibits an uncertainty of 3%. In order to reduce the uncertainty inherent in the calculation of the absorbed and generated heat, a study was conducted to selected more precise sensors and monitoring equipment. Moreover, fieldwork was conducted to install the selected, more precise equipment at the SOLPINVAP solar field. The monitoring results demonstrate that the uncertainty in the absorbed heat was reduced by 79% as a consequence of the improvement in the measurement instrumentation. As part of this thesis project, a research stay was conducted at the Departamento de Ingeniería de Mecánica y Metalúrgica of the Pontificia Universidad Católica de Chile, in Santiago. The host research team has been investigating the potential application of solid PBTES with copper slag, a by-product of the pyrometallurgical process of the copper ore, as a storage medium. Moreover, the research team has developed a mathematical model that simulates the thermodynamic and heat transfer process associated with the airflow and solid particles. Accordingly, the PBTES system model has been integrated into the SHIP system model for examination of its effect on the system performance. Furthermore, this thesis examines the dynamics between the temperatures of the different system components. Consequently, this thesis presents a design for an integrated SHIP with PBTES system. Moreover, it was determined that by modifying the air mass flow and the makeup water flow, the system is capable of maintaining a consistent and uninterrupted heat output throughout the operational duration. The results demonstrate that the system with the PBTES is capable of generating 18% more energy than the system without the PBTES. / I would like to thank the Universitat Politècnica de València through the Research and Development Aid Program (PAID-01-20) for receiving the Research Fellowship FPI-UPV-2020. I would also like to acknowledge the "Programa de Movilidad para estudiantes de doctorado" of the Universitat Politècnica de València for providing financial support for my research stay. / David Hernández, MA. (2024). Fresnel Solar Collector System for Indirect Steam Generation for Industrial Processes with Thermal Energy Storage [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213678

Page generated in 0.0491 seconds