• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Informationstechnische Einbindung dezentraler Energiesysteme

Szelig, Janine 04 December 2018 (has links)
Die steigende Anzahl dezentraler wetterabhängiger Energiesysteme im Stromversorgungsnetz führt zu einer Wandlung der Energieversorgungsstruktur. Um die Netzstabilität zu gewährleisten sowie die Energie- und Klimaziele der Bundesregierung zu erreichen, können dezentrale Energiesysteme in die zentrale Energieversorgungsstruktur mithilfe eines virtuellen Kraftwerkes eingebunden werden. Für wirtschaftliche Entscheidungen bei virtuellen Kraftwerken muss die Bilanz des virtuellen Kraftwerkes vollständig betrachtet werden. Mit einer Optimierung der Fahrpläne der Energiesysteme mit Betrachtung der Restriktionen für Wärme können wirtschaftliche Fehlentscheidungen beim Betrieb und der Auslegung virtueller Kraftwerke vermieden werden. Die Bundesrepublik spricht bei KWK-Anlagen von einer Schlüsseltechnologie für die Einbindung von Energiesystemen mit stark schwankender Stromerzeugung, da die KWK-Anlagen sehr flexibel sind. Diese Flexibilität wird aber durch die Restriktionen der Wärmeabnahme begrenzt. Für die Betrachtung virtueller Kraftwerke ist eine gesamtwirtschaftliche Betrachtung für Wärme und Strom durchzuführen, wenn KWK-Anlagen an dem virtuellen Kraftwerk beteiligt sind. Die folgende Arbeit erstellt eine Simulation, die mit sechs über das Jahr verteilten Testfällen zeigt, dass eine vollständige Bilanz eines virtuellen Kraftwerkes die Restriktionen für Strom und für Wärme einbinden muss. Die wichtigsten Parameter der Simulation sind die Strom- und die Wärmelast, Preisstrukturen für Strom und Wärme sowie die Eigenschaften der beteiligten Energiesystemen, wie beispielsweise die minimale und maximale Leistung, die Laständerungsgeschwindigkeit und die Kapazität bei Speichern. Grundlage für die Testfälle sind reale Daten eines regionalen Energieversorgers zu den Lasten, Energiesystemen und Preisen. Die vorliegende Arbeit weist nach, dass eine Integration der Wärmeerzeugungskosten und -erlöse notwendig ist, um den wirtschaftlichen Betrieb eines virtuellen Kraftwerks vollständig darzustellen. Damit kann eine Entscheidungsgrundlage für einen Verbund von Energiesystemen für ein virtuelles Kraftwerk getroffen werden. Es können optimierte Fahrpläne generiert werden, um frühzeitig Energie am Markt zu handeln und somit den Gewinn des virtuellen Kraftwerkes unter Berücksichtigung aller Randbedingungen zu maximieren.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis Einheitenverzeichnis Indizeverzeichnis 1 Einleitung 2 Problemdarstellung 2.1 Hintergrund und Problemdarstellung 2.2 Literaturrecherche – State of the Art 3 Wissenschaftstheoretische Grundpositionen, Forschungsziele und Forschungsmethode 3.1 Wissenschaftstheoretische Grundpositionen und Forschungsziele 3.2 Auswahl der Forschungsmethode 4 Beschreibung der Simulation und der Ergebnisse 4.1 Mathematische Grundlage der Optimierung 4.2 Allgemeiner Aufbau der Simulation 4.3 Eingabedaten 4.4 Erste Optimierungsstufe 4.5 Zweite Optimierungsstufe 4.6 Beschreibung von Testfällen 5 Diskussion der Ergebnisse und Zielerreichung 6 Fazit und Ausblick Literaturverzeichnis Anhang
2

Modellbasierte Entwicklung von Energiemanagement-Methoden für Flugzeug-Energiesysteme

Schlabe, Daniel 26 January 2017 (has links) (PDF)
Ein geringer Treibstoffverbrauch ist aufgrund von ökologischen und ökonomischen Zielen für die zivile Luftfahrt von großer Bedeutung. Daher werden seit Jahrzehnten konventionell hydraulisch oder pneumatisch betriebene Flugzeugsysteme durch elektrisch betriebene Systeme ersetzt. Dieser Trend wird auch als „More Electric Aircraft (MEA)“ bezeichnet. In bisherigen Studien waren MEA-Architekturen zwar effizienter, jedoch deutlich schwerer als die konventionellen Architekturen. Basierend auf ökonomischen Modellen wird in der vorliegenden Arbeit die modellbasierte Entwicklung eines intelligenten Energiemanagements für Flugzeug-Energiesysteme demonstriert. Das Energiemanagement ermöglicht eine deutliche Reduktion der Systemmasse, verbessert die Energieeffizienz und kann damit den Treibstoffverbrauch eines MEA beträchtlich reduzieren. Insbesondere durch die integrierte und frühzeitige Entwicklung des Energiemanagements mit dem elektrischen System in der Modellbeschreibungssprache Modelica lassen sich die Systemkomponenten mit realistischen Lastprofilen dimensionieren und dadurch die Systemmasse reduzieren. Anhand eines elektrischen Referenzsystems wird das Optimierungspotenzial des Energiemanagements bezüglich Massenreduktion und Energieeffizienzsteigerung quantifiziert und am Systemmodell validiert. Es ergibt sich für das Systemmodell eine Reduktion der Systemmasse um 32 % sowie eine leichte Verbesserung der Energieeffizienz. Durch die multiphysikalische Implementierung des Energiemanagements lässt sich dieses auch für das thermische Management im Flugzeug verwenden. Hierbei kann eine deutliche Verbesserung der Energieeffizienz für die Bereitstellung von Kühlleistung erzielt werden. Aufgrund der erreichten Vorteile sollte ein Energiemanagement bei der Entwicklung zukünftiger Flugzeugenergiesysteme in Betracht gezogen werden. Insbesondere beim MEA existiert ein großes Optimierungspotenzial durch das Energiemanagement. Die Ausführungen in der vorliegenden Arbeit sollen als Motivation für die Flugzeugindustrie dienen, mit realistischen Lastprofilen zu dimensionieren und die modellbasierte und integrierte Entwicklung eines Energiemanagements mit den Energiesystemen bereits in frühen Entwicklungsphasen durchzuführen. / Low fuel consumption is a major concern in civil aerospace due to environmental and economic objectives. Hence, conventional hydraulically or pneumatically driven aircraft systems have been replaced by electrically driven systems for decades. This trend is also known as More Electric Aircraft (MEA). In former studies, MEA architectures were more efficient, but much heavier than their conventional counterparts. The present work demonstrates the model-based development of intelligent energy management algorithms for aircraft energy systems based on economic models. This energy management facilitates a significant reduction of system mass, improves energy efficiency and can hence reduce fuel consumption of MEA considerably. In particular, the integrated development of an energy management along with the electrical system in the Modelica modelling language enables sizing of system components with realistic load profiles. Hence, this reduces the system mass. The optimization potential of the energy management is quantified and validated by means of an electrical reference system model. Applying the energy management, the mass of this system model can be reduced by 32 % and the energy efficiency can be improved slightly. Due to the multi-physical modelling of the energy management, it can also be applied to thermal management of aircraft systems. Thus, the energy efficiency of the cooling system can be improved significantly. As a result of the demonstrated benefits, an energy management should be considered for future development of aircraft energy systems. Especially for MEA, there is tremendous optimization potential for the energy management. Hence, the present work shall motivate aircraft industry to size aircraft systems with realistic load profiles and perform a model-based and integrated development of the energy management along with the electrical system in early phases of the system design process.
3

Modellbasierte Entwicklung von Energiemanagement-Methoden für Flugzeug-Energiesysteme

Schlabe, Daniel 01 October 2015 (has links)
Ein geringer Treibstoffverbrauch ist aufgrund von ökologischen und ökonomischen Zielen für die zivile Luftfahrt von großer Bedeutung. Daher werden seit Jahrzehnten konventionell hydraulisch oder pneumatisch betriebene Flugzeugsysteme durch elektrisch betriebene Systeme ersetzt. Dieser Trend wird auch als „More Electric Aircraft (MEA)“ bezeichnet. In bisherigen Studien waren MEA-Architekturen zwar effizienter, jedoch deutlich schwerer als die konventionellen Architekturen. Basierend auf ökonomischen Modellen wird in der vorliegenden Arbeit die modellbasierte Entwicklung eines intelligenten Energiemanagements für Flugzeug-Energiesysteme demonstriert. Das Energiemanagement ermöglicht eine deutliche Reduktion der Systemmasse, verbessert die Energieeffizienz und kann damit den Treibstoffverbrauch eines MEA beträchtlich reduzieren. Insbesondere durch die integrierte und frühzeitige Entwicklung des Energiemanagements mit dem elektrischen System in der Modellbeschreibungssprache Modelica lassen sich die Systemkomponenten mit realistischen Lastprofilen dimensionieren und dadurch die Systemmasse reduzieren. Anhand eines elektrischen Referenzsystems wird das Optimierungspotenzial des Energiemanagements bezüglich Massenreduktion und Energieeffizienzsteigerung quantifiziert und am Systemmodell validiert. Es ergibt sich für das Systemmodell eine Reduktion der Systemmasse um 32 % sowie eine leichte Verbesserung der Energieeffizienz. Durch die multiphysikalische Implementierung des Energiemanagements lässt sich dieses auch für das thermische Management im Flugzeug verwenden. Hierbei kann eine deutliche Verbesserung der Energieeffizienz für die Bereitstellung von Kühlleistung erzielt werden. Aufgrund der erreichten Vorteile sollte ein Energiemanagement bei der Entwicklung zukünftiger Flugzeugenergiesysteme in Betracht gezogen werden. Insbesondere beim MEA existiert ein großes Optimierungspotenzial durch das Energiemanagement. Die Ausführungen in der vorliegenden Arbeit sollen als Motivation für die Flugzeugindustrie dienen, mit realistischen Lastprofilen zu dimensionieren und die modellbasierte und integrierte Entwicklung eines Energiemanagements mit den Energiesystemen bereits in frühen Entwicklungsphasen durchzuführen. / Low fuel consumption is a major concern in civil aerospace due to environmental and economic objectives. Hence, conventional hydraulically or pneumatically driven aircraft systems have been replaced by electrically driven systems for decades. This trend is also known as More Electric Aircraft (MEA). In former studies, MEA architectures were more efficient, but much heavier than their conventional counterparts. The present work demonstrates the model-based development of intelligent energy management algorithms for aircraft energy systems based on economic models. This energy management facilitates a significant reduction of system mass, improves energy efficiency and can hence reduce fuel consumption of MEA considerably. In particular, the integrated development of an energy management along with the electrical system in the Modelica modelling language enables sizing of system components with realistic load profiles. Hence, this reduces the system mass. The optimization potential of the energy management is quantified and validated by means of an electrical reference system model. Applying the energy management, the mass of this system model can be reduced by 32 % and the energy efficiency can be improved slightly. Due to the multi-physical modelling of the energy management, it can also be applied to thermal management of aircraft systems. Thus, the energy efficiency of the cooling system can be improved significantly. As a result of the demonstrated benefits, an energy management should be considered for future development of aircraft energy systems. Especially for MEA, there is tremendous optimization potential for the energy management. Hence, the present work shall motivate aircraft industry to size aircraft systems with realistic load profiles and perform a model-based and integrated development of the energy management along with the electrical system in early phases of the system design process.
4

Beitrag zur ganzheitlichen Sicherheitsforschung wasserstoffbasierter Technologien

Römer, L., Partmann, C., Lippmann, W., Hurtado, A. 25 November 2019 (has links)
Mit der fortschreitenden Entwicklung wasserstoffbasierter Energiesysteme geht die Notwendigkeit einher, die neuen Technologiekonzepte hinsichtlich deren Sicherheit zu analysieren und zu bewerten. Ziel des vorliegenden Papers ist daher zunächst die Beschreibung des aktuellen Standes zur Sicherheitsforschung für wasserstoffbasierte Energiesysteme. Die durchgeführte Literaturauswertung erfolgte mit den Schwerpunkten Analyseziele, Anwendungsbereiche und angewendete Methoden. Durch Unterschiede hinsichtlich dieser Schwerpunkte in der herangezogenen Literatur ist die Vergleichbarkeit und Verknüpfung der Ergebnisse erschwert. Zusätzlich liefern die ausgewerteten Studien gegensätzliche Schlussfolgerungen zur Bewertung der Sicherheit von wasserstoffbasierten Systemen. Eine beispielhafte Gegenüberstellung der Analyse eines Einzelsystems zu der Analyse eines Gesamtsystems verdeutlich darüber hinaus die Notwendigkeit für ganzheitliche Analysen in der Wertschöpfungskette von Wasserstoff. Ein einheitliches Fazit zur Sicherheit wasserstoffbasierter Energiesysteme ist anhand der ausgewerteten Studien aufgrund der großen Unsicherheiten und der Widersprüchlichkeiten in den Ergebnissen der Analysen aktuell nicht möglich. Hierfür sind weiterführende Arbeiten erforderlich. / The progressive development of hydrogen-based energy systems is accompanied by the need to analyse and evaluate new technology concepts in terms of their safety. Therefore, the aim of this paper is therefore to describe the current state of the safety research for hydrogen-based energy systems. The literature analysis was carried out with a focus on analysis goals, areas of application and applied methods. Differences with regard to these focuses in the cited literature make it difficult to compare and link the results. In addition, the evaluated studies provide contradictory conclusions for the evaluation of the safety of hydrogen-based systems. In an exemplary comparison of the analysis of an individual system with the analysis of an overall system, the need for holistic analyses in the hydrogen value chain is further illustrated. A consistent conclusion on the safety of hydrogen-based energy systems is currently not possible on the basis of the analysed studies due to the large uncertainties and the contradictions in the results of the analyses. Consequently, further work is required. A consistent conclusion on the safety of hydrogen-based energy systems is currently not possible on the basis of the analysed studies due to the large uncertainties and the contradictions in the results of the analyses. Consequently, further work is required.
5

Parameter Study of Geometrically Induced Flow Maldistribution in Shell and Tube Heat Exchangers

Schab, Richard, Dorau, Tim, Unz, Simon, Beckmann, Michael 30 March 2023 (has links)
Shell and tube heat exchangers (STHEs) are the most common type of heat exchanger in preheat trains (PHT) of oil refineries and in chemical process plants. Most commercial design software tools for STHE assume uniform distribution over all tubes of a tube bundle. This leads to various challenges in the operation of the affected devices. Flow maldistribution reduces heat duty of STHE in many applications and supports fouling buildup in fluids that tend to particle, bio, and crystallization fouling (Verein Deutscher Ingenieure, ed., 2010, Heat Atlas, 2nd ed., VDI-Buch., Springer-Verlag). In this article, a fluid mechanics study about tube side flow distribution of crude oil and related hydrocarbons in two-pass PHT heat exchangers is described. It is shown that the amount of flow maldistribution varies significantly between the different STHE designs. Therefore, a parameter study was conducted to investigate reasons for maldistribution. For instance, the nozzles diameter, type, and orientation were identified as crucial parameters. In consequence, simple design suggestions for reducing tube side flow maldistribution are proposed.

Page generated in 0.108 seconds