• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Energy Foundations: Geotechnical Challenges and Design Considerations

Abdelaziz, Sherif Lotfy Abdel Motaleb 07 May 2013 (has links)
Traditionally, geothermal boreholes have utilized the ground energy for space heating and cooling. In this system, a circulation loop is placed in a small-diameter borehole typically extending to a depth of 200-300 ft. The hole is then backfilled with a mixture of sand, bentonite and/or cement. The loop is connected to a geothermal heat pump and the fluid inside the loop is circulated. The heat energy is fed into the ground for cooling in the summer and withdrawn from the ground for heating in the winter. Geothermal heat pumps work more efficiently for space heating and cooling compared to air-source heat pumps.  The reason is ground-source systems use the ground as a constant temperature source which serves as a more favorable baseline compared to the ambient air temperature. A significant cost associated with any deep geothermal borehole is the drilling required for installation. Because Energy Piles perform the dual function of exchanging heat and providing structural support, and are only installed at sites where pile foundations are already required, these systems provide the thermal performance of deep geothermal systems without the additional drilling costs. Low maintenance, long lifetime, less variation in energy supply compared to solar and wind power, and environmental friendliness have been cited as additional Energy Pile advantages. Case studies show that they can significantly lower heating/cooling costs and reduce the carbon footprint. Energy cost savings for typical buildings outfitted with Energy Piles could be as much as 70 percent. The use of Energy Piles has rapidly increased over the last decade, especially in Europe where more than 500 applications are reported. Primary installations have been in Germany, Austria, Switzerland and United Kingdom. Notable projects include the 56-story high Frankfurt Main Tower in Germany, Dock E Terminal Extension at Zurich International Airport in Switzerland and the One New Change building complex in London U.K. Energy piles have seen very little use in the North America, only a handful of completed projects are known; Marine Discovery Center in Ontario, Canada, Lakefront Hotel in Geneva, New York and the Art Stable building in Seattle, Washington. Energy Piles are typically installed with cast-in-place technology (i.e. drilled shafts, continuous flight auger piles, micropiles etc.) while some driven pile applications are also reported. Other types of geotechnical structures in contact with the ground, such as shallow foundations, retaining walls, basement walls, tunnel linings and earth anchors, also offer significant potential for harnessing near-surface geothermal energy. Energy Pile design needs to integrate geotechnical, structural and heat exchange considerations. Geotechnical characteristics of the foundation soils and the level of the structural loads are typically the deciding factors for the selection and dimensioning of the pile foundations. The geothermal heat exchange capacity of an Energy Pile is a key parameter to be considered in design. Thermal characteristics of the ground as well as the heating and cooling loads from the structure need to be considered for the number of piles that will be utilized as heat exchangers. Therefore, the thermal properties of the site need to be evaluated for an Energy Pile application in addition to the traditional geotechnical characterization for foundation design. Energy Piles bring new challenges to geotechnical pile design. During a heat exchange operation, the pile will expand and contract relative to the soil as heat is injected and extracted, respectively. These relative movements have the potential to alter the shear transfer mechanism at the pile-soil interface.  Furthermore, the range of temperature increases near the pile surface, though limited by practical operational guidelines, can have a significant effect on pore pressures generation and soil strength. This dissertation provides answers for several research questions including the long-term performance of Energy Piles, the applicability of the thermal conductivity tests to Energy Piles.  Furthermore, it presents the results and a detailed discussion about the full scale in-situ thermo-mechanical pile load test conducted at Virginia Tech. / Ph. D.
2

Energy Piles: A Theoretical Review of Thermo-mechanicalBehavior & Advantages of Future Use In Ohio

Fellows, Candice M. 16 May 2014 (has links)
No description available.
3

Pastato aprūpinimas šiluma šilumos siurbliu su šiluminiu poliumi / Heat supply to the building using a heat pump with energy piles

Žostautas, Mauricijus 26 July 2012 (has links)
Baigiamajame magistro darbe nagrinėjamas pastato, aprūpinimas šiluma šilumos siurbliu su šiluminiais poliais. Yra apžvelgtos esamos giliosios bei sekliosios geoterminės energijos panaudojimo panaudojimo galimybės Lietuvoje. Aprašytos prielaidos ir supaprastinimai šiluminių polių skaičiavimui, aprašytos skaičiavimo metodikos. Atlikti šiluminių polių skaičiavimai, naudojantis penkiomis metodikomis. Aprašytas pasirinktas pastatas, apskaičiuoti atitvarų šiluminiai rodikliai, nustatyta pastatui reikalinga šiluminė galia. Naudojantis „Design builder“ modeliavimo programa sukurtas pastato modelis ir apskaičiuoti pastato šilumos bei vėsos poreikiai metų laikotarpiu. Pagal nustatytus poreikius modeliavimo programa „EED“ sumodeliuoti šildymo vėsinimo ciklai dvidešimt penkeriems metams į priekį. Sistema palyginta su baziniu šilumos šaltiniu. Išnagrinėjus gautus rezultatus pateikiamos rekomendacijos bei baigiamojo darbo išvados. Darbą sudaro 11 dalių: įvadas, geoterminės energijos panaudojimo galimybės Lietuvoje, šilumos siurblių tipai, šiluminių polių skaičiavimo metodikos bei skaičiavimai, nagrinėjamo pastato aprašymas, pastato šiluminės galios skaičiavimas, pastato šilumos/vėsos poreikių modeliavimas „Design builder“ programa, šiluminių polių skaičiavimas „EED“ programa, nagrinėjamos sistemos palyginimas su baziniu šilumos šaltiniu, rekomendacijos, išvados ir literatūros sąrašas. Darbo apimtis 68 p. teksto be priedų, 49 iliustr., 16 lent., 29 literatūros šaltiniai. / The final master thesis presents analysis of heat supply to the building using a heat pump with energy piles. There is an overview of shallow and deep geothermal energy utilization current possibilities in Lithuania. The assumptions and simplifications of the calculation for the energy piles are described as well as the calculation methodology. Calculations of the energy piles are performed, using five methods. The chosen building is described, thermal performance of partitions are calculated and the building heating capacity is calculated. . Using the "Design Builder" building simulation program a model was generated and the calculations of annual heating and cooling demand are performed. According to the demand of building using simulation program "EED" heating /cooling cycles are calculated of twenty-five years ahead. The system was compared with the basic heat source. After analyzing all results conclusions are given. Thesis consists of 11 parts: introduction, overview of geothermal energy resources usage posibilities in Lithuania, types of heat pumps, calculation methods and calculations of energy piles, description of the building data, calculation of building heating system power, simulation of heat /cooling demand of the building with "Design Builder" program, calculation of energy piles with "EED" modeling program, Comparison of the system with the basic source of heat, recommendations, conclusions and references, Volume of the thesis 68 p. of the text... [to full text]
4

Thermo-Hydro-Mechanical Effects on the Behaviour of Unsaturated Soil-Structure Interfaces and the Numerical Analysis of Energy Piles

Fu, Zhu January 2017 (has links)
The shear strength of soil-structure interfaces is relevant to the stability of energy piles. The thermo-hydro-mechanical processes can have a strong effect on the behaviour of interfaces between unsaturated soils and piles. Temperature changes lead to water movement in the soil. The moisture loss or gain in the soil causes drying or wetting. In addition, water movement influences the heat transfer properties of the soil. Temperature and moisture content changes affect the magnitude of soil suction in unsaturated soils. Changes in soil suction alter the strength and deformation characteristics of the soil mass and soil-structure interfaces. Similar to the effects of temperature changes, the mechanical loading and the changes in hydraulic conditions in the ground would cause changes in the void ratio, degree of saturation, suction, strength and deformation characteristics of soil. The interface behaviour under varying thermo-hydro-mechanical (THM) conditions is classified as a coupled problem and this is the subject of the present research. In the present investigation, laboratory studies and numerical analyses are carried out to evaluate the THM effect on the behaviour of interfaces between an energy pile material and an unsaturated soil. A 3D interface apparatus (Fakharian and Evgin 1996) has been modified (Fu et al. 2013) to allow the behaviour of an interface to be studied under thermo-mechanical loading conditions. In the present study, the experiments are conducted on soil samples with low degree of saturation and high degree of saturation. It is found that in interface tests using soil samples with low degree of saturation, the adhesion increased due to a positive effect of suction on strength than the negative effect of increasing temperatures. However, in interface tests on soil samples with high degree of saturation, the adhesion decreased with increasing temperatures while the positive effect of suction was not large enough to overcome the negative effect of increasing temperatures. This is a new finding that has not been reported anywhere in the literature. The friction angle for both soil samples (with different degrees of saturation) changed slightly with temperature change. Coupled finite element analyses conducted in the present study provide the following geotechnical information that would be useful for the design of energy piles: (a) Bearing capacity of the pile with and without the effect of temperature, (b) The effect of degree of saturation (or suction) on the strength and deformation characteristics of both the soil and the soil-structure interface, (c) Temperature effects on the amount of pile head movements (up or down), (d) Temperature induced stresses in the pile, (f) Amount of heat that can be stored or extracted from the ground as a function of time. At the initial stages of this study, THM effects on the behaviour of energy piles under saturated and unsaturated conditions are analyzed by using SIGMA/W and VADOSE/W finite element codes of GeoStudio 2012. Although these codes are not multi-physics FE codes, it is possible to use them sequentially to obtain results that will show the trends in pile behaviour. This numerical approach is used first to analyze the behaviour of an energy pile installed partially in unsaturated soil. The moisture content and temperature distributions around a 10 m long, bored pile are calculated using transient analyses. Changes taking place in the stress state along the pile shaft and the bearing capacity of the pile at different temperatures are calculated. In the second part of the numerical analysis of the present study, THM effects on the behaviour of energy piles under saturated and unsaturated conditions are analyzed by using PLAXIS 2D finite element code. PLAXIS is a fully couples finite element code. In order to enhance present understanding of the behaviour of energy piles and do the analysis correctly, a fully coupled analysis involving thermo-hydro-mechanical processes was carried out. Three simulations (mechanical loading only, thermo-mechanical coupling and thermo-hydro-mechanical coupling) are conducted using case studies that are available in the literature. In addition, the behaviour of a generic energy pile, which is installed in a kaolin-sand mixture, is studied by taking into consideration of thermo–hydro-mechanical processes. The coupled analysis provided the distributions of temperature, degree of saturation, suction and heat flux in the analysis domain. Numerical results of the fully-coupled method are compared with the results of sequential method of analysis.
5

Design and execution of energy piles : Validation by in-situ and laboratory experiments / Dimensionnement et exécution de pieux énergétiques : Validation par essais in-situ et en laboratoire

Vasilescu, Andreea-Roxana 08 July 2019 (has links)
Les pieux énergétiques représentent une solution alternative intéressante, face à l’accroissement des besoins mondiaux en énergie et à la réduction de l’utilisation des énergies fossiles. L’objectif principal de la thèse est d’identifier et de quantifier les principaux facteurs influençant le dimensionnement des pieux géothermiques, qui sont impactés par les changements de température des pieux lors de leur activité. Pour ce faire, ce travail de thèse a été dressé en 3 campagnes expérimentales, dont deux à échelle réelle : (i) une première campagne à chargement thermomécanique contrôlé (Marne La Vallée), (ii) une seconde campagne en conditions d’utilisation réelles sous une station d’épuration (Sept Sorts) et (iii) une troisième campagne à l’échelle du laboratoire grâce à une nouvelle machine de cisaillement direct d’interface permettant l’étude du comportement thermo mécanique des interfaces sol-structure. Ces trois campagnes expérimentales ont pour but de quantifier l’effet de la température et des cycles de température sur le comportement des pieux énergétiques. Les premiers résultats expérimentaux de la campagne de Sept Sorts ont ensuite été simules dans le code LAGAMINE via la méthode des éléments finis, afin d’adopter une approche complémentaire permettant de mieux appréhender la réponse thermomécanique de ce type de pieu lors de l’activation géothermique. et (iii) une troisième campagne à l’échelle du laboratoire grâce à une nouvelle machine de cisaillement direct d’interface permettant l’étude du comportement thermo mécanique des interfaces sol-structure. Ces trois campagnes expérimentales ont pour but de quantifier l’effet de la température et des cycles de température sur le comportement des pieux énergétiques. Les premiers résultats expérimentaux de la campagne de Sept Sorts ont ensuite été simules dans le code LAGAMINE via la méthode des éléments finis, afin d’adopter une approche complémentaire permettant de mieux appréhender la réponse thermomécanique de ce type de pieu lors de l’activation géothermique. / Energy piles, also called thermo-active piles, are an alternative solution to the increase in the global energy demand as well as in mitigating socio-economical stakes concerning the increase of energy costs due to fossil fuels. Energy piles are double purpose structures that allow transferring the loads from the superstructure to the soil and that integrate pipe circuits allowing heat exchange between the pile and the surrounding ground. The objective of this thesis is to identify and quantify the principal parameters involved in the geotechnical design of pile foundations impacted by temperature changes associated with geothermal activation. For this purpose, this research work was organized in 3 experimental campaigns: (i) A full scale load controlled test at Ecole des Ponts Paris-Tech, (ii) Full scale energy piles monitoring under real exploitation conditions at Sept Sorts, (Seine et Marne, France), (iii) Laboratory tests in order to assess the effect of temperature and temperature cycles at the soil-pile interface. The experimental results are used to estimate the effect of geothermal activation of a pile foundation, on its bearing capacity as well as on its long-term exploitation. Finally, preliminary numerical simulations were performed using a thermo-hydro mechanical model, using the finite element method code LAGAMINE able to capture the main phenomena.
6

Energipålning : En grön grundläggning / Energy piling - a green foundation

Landqvist, Anders January 2014 (has links)
Det finns en innovativ, grön grundläggningsteknik kallad energigrundläggning. Principen är att integrera redan erforderliga, strukturella element såsom pålar med en värmeväxlare i syfte att utvinna energi. Tekniken har funnits sedan tidigt 80-tal men har knappt används i Norden. Tekniken visar på stor potential då man kan uppnå synergi genom utvinning av värme under vinterhalvåret och kyla under sommarhalvåret. I detta arbete redogörs för grundläggande principer och mekanismer bakom energigrundläggning samt en omfattande litteraturstudie av vad som tidigare har studerats inom området. Det finns få exempel i litteraturen på problematiken med förändrade geotekniska egenskaper hos jorden på grund av energiutvinningen och än färre exempel på knäckningsproblematiken hos slagna, slanka stålrörspålar. Tyngdpunkten i arbetet har varit just denna förändring av de geotekniska egenskaperna, främst skjuvhållfastheten och hur denna förändring påverkar pålens bärförmåga. På grund av saknad av originell data har flera antaganden och erfarenheter tagits från Tidfors (1987) som undersökte förändringar hos olika lerors geotekniska egenskaper då de utsattes för olika temperaturdifferenser. I arbetet har två konsekvenser av användning av energipålning studerats i en fallstudie, nämligen temperaturinducerad rörelse av pålen och försämrad bärförmåga med avseende på knäckning. Fallstudien är ett nyligen färdigställt projekt i Jyväskylä, Finland där en kommersiell byggnad grundlagts på energipålar. De temperaturinducerade rörelserna hos pålen har undersökts analytiskt genom beräkning med gällande förutsättningar i Jyväskylä. De axiella lasterna som uppkommer i studien visar inte de storlekar som krävs för att innebära ett strukturellt problem. Dock visar fenomenet på ett reellt problem som måste tas i beaktning. Det är även svårt att modellera problemet då det är svårt att avgöra vilken slags inspänning pålen har. Knäckningsproblematiken studerades även den analytiskt genom beräkning. En typ-påle dimensionerades enligt gällande normer med en gradvis försämrad och förbättrad skjuvhållfasthet. Förändringen av skjuvhållfastheten byggde på antaganden baserade på resultaten presenterade av Tidfors (1987). Den försämrade skjuvhållfastheten innebär självfallet försämrad bärförmåga. Brottmoden knäckning blev dimensionerande vid en 50 % försämring av skjuvhållfastheten. Användandet av energigrundläggning medför förändringar av jordens geotekniska egenskaper och innebär att ett behov av att kvantifiera dessa förändringar uppstår. Vidare måste konsekvenserna av användande integreras i dimensioneringsprocessen så att framtida ekonomiskt gångbart användande är möjligt. På så sätt kan tekniken växa och infria sin stora potential. / There is an innovative, green foundation technique called energy foundation. The principle is to integrate already required structural elements such as piles with a heat exchanger to extract energy. The technology has been around since the early 1980’s but has hardly been used in the Nordic countries. The technique shows great potential as one can achieve synergy by extracting heating in wintertime and cooling in the summertime. This thesis presents the basic principles and mechanisms of energy foundation and an extensive literature review of what has been previously studied in the area. There are few examples in the literature on the problems associated with the changes of geotechnical properties due to energy extraction. Even fewer examples of the buckling problem of driven, slender steel pile. The focus of this thesis has been this change of the geotechnical properties, mainly the shear strength and how this change affects the pile bearing capacity. Because of a lack of original data, several assumptions and experiences has been derived from Tidfors (1987). She subjected different clays to different temperatures and investigated the changes in the various clays’s geotechnical properties. In the thesis has two consequences of the use of energy piles been studied in a case study. The two consequences are temperature-induced motion of the pile and buckling problems due to loss of shear strength of the soil. The case study is a recently completed project in Jyväskylä, Finland, where a commercial building’s foundation has been laid on energy piles. The temperature-induced motion of the pile has been investigated analytically by calculation given the conditions in Jyväskylä. The axial loads arising in the pile did not show the sizes needed to represent a structural problem. However, the phenomenon presents a real problem that must be taken into consideration. It is also difficult to model the problem as it is difficult to determine what kind of restraint the pile got. The buckling problem was also studied analytically by calculation. A typical pile was designed according to current standards with a gradual deterioration and improved of the soils shear strength. The change in the shear strength was based on assumptions corresponding to the results presented by Tidfors (1987). The deterioration of the shear strength did obviously reduce the pile’s carrying capacity. Failure by bucklingmode came into play at a reduction of the shear capacity of 50 %. The use of energy foundation results in changes of the soil’s geotechnical properties and creates a need to quantify these changes. Furthermore must the consequences by using energy foundation be integrated into the design process so that in the future economically viable usage is possible. By doing so the technology can grow and fulfil its great potential.
7

Thermal and thermo-mechanical behavior of energy piles / Comportement thermique et thermo-mécanique des pieux énergétiques

Nguyen, Van-Tri 18 December 2017 (has links)
Le comportement thermique et thermo-mécanique des pieux énergétiques est étudié par plusieurs approches : mesures au laboratoire sur des éprouvettes de sol, modélisation physique en modèle réduit, expérimentations sur pieu en vraie grandeur, et calculs numériques/analytiques. D’abord, la conductivité thermique d’un loess à l’état non saturé est mesurée en fonction de la teneur en eau et de la succion. Les résultats montrent une relation univoque entre la conductivité thermique et la teneur en eau pendant un cycle d’humidification/séchage alors qu’une boucle d’hystérésis est observée pour la relation entre la conductivité thermique et la succion. Deuxièmement, des essais thermiques sont réalisés sur un pieu énergétique expérimental en vraie grandeur pour étudier le transfert thermique à l’échelle réelle. Troisièmement, une solution analytique est proposée pour simuler la conduction thermique d’un pieu énergétique vers le sol environnant pendant un chauffage. Les tâches mentionnées ci-dessus concernant le comportant thermique sont ensuite complétées par des études sur le comportement thermo-mécanique des pieux énergétiques. D’un côté, des expérimentations sont réalisées sur un modèle réduit de pieu installé dans un sable sec ou dans une argile saturée. Trente cycles thermiques, représentant trente cycles annuels, sont appliqués au pieu sous différentes charges axiales en tête. Les résultats montrent un tassement irréversible avec les cycles thermiques ; ce tassement est plus important sous une charge axiale plus grande. De plus, le tassement est plus marqué pendant les premiers cycles thermiques et devient négligeable pour les cycles suivants. De l’autre côté, les travaux expérimentaux sur le modèle réduit de pieu sont complétés par les calculs numériques utilisant la méthode des éléments finis. Cette approche est d’abord validée avec les résultats obtenus sur le pieu modèle avant d’être utilisée pour prédire les résultats des expérimentations en vraie grandeur / The thermal and thermo-mechanical behavior of energy piles is investigated by various approaches: laboratory measurement on small soil samples, physical modeling on small-scale pile, experiments on real-scale pile, and analytical/numerical calculations. First, the thermal conductivity of unsaturated loess is measured simultaneously with moisture content and suction. The results show a unique relationship between thermal conductivity and moisture content during a wetting/drying cycle while a clear hysteresis loop can be observed on the relationship between thermal conductivity and suction. Second, thermal tests are performed on a full-scale experimental energy pile to observe heat transfer at the real scale. Third, an analytical solution is proposed to simulate conductive heat transfer from an energy pile to the surrounding soil during heating. The above-mentioned tasks related to the thermal behavior are then completed by studies on the thermo-mechanical behavior of energy piles. On one hand, experiments are performed on a small-scale pile installed either in dry sand or in saturated clay. Thirty thermal cycles, representing thirty annual cycles, are applied to the pile under various constant pile head loads. The results show irreversible pile head settlement with thermal cycles; the settlement is higher at higher pile head load. In addition, the irreversible thermal settlement is the most significant during the first cycles; it becomes negligible at high number of cycles. On the other hand, the experimental work with small-scale pile is completed with numerical calculations by using the finite element method. This approach is first validated with the results on small-scale pile prior to be used to predict the results of full-scale experiments
8

Comportement thermo-hydromécanique des sols au voisinage des géo-structures énergétiques

Eslami, Hossein 28 November 2014 (has links)
Les géostructures énergétiques consistent à établir un échange thermique direct avec le sol grâce à des systèmes intégrés dans les fondations ou les structures géotechniques. L’incorporation des échangeurs de chaleur aux géostructures provoque une variation cyclique de la température du sol adjacent. Des questions se posent sur l'impact de ces variations thermiques sur les paramètres géotechniques des sols en général, et en particulier des sols sensibles argileux. L’objectif de cette thèse est d’améliorer la compréhension et la quantification de l’impact de la variation de la température sur la capacité portante des pieux géothermiques. Actuellement, le dimensionnement des capacités portantes des fondations profondes est basé sur les résultats d’essais pénétrométriques ou pressiométriques. Des méthodes expérimentales ont été développées afin de permettre la réalisation de ces essais dans les conditions du laboratoire. Des essais mini-pénétrométriques sont réalisés sur des éprouvettes compactées à différents états initiaux et soumises à des températures variant de 1 à 70 °C. Les résultats montrent une évolution sensible des paramètres étudiés, la résistance en pointe (qc) et le frottement latéral (fs), pour un matériau illitique, lorsqu’il est compacté du côté sec de l’optimum. Les essais mini-pressiométriques, réalisés sur des massifs de sol illitique compactés en modèle réduit d’échelle métrique dans une cuve thermo-régulée, ont montré une diminution de la pression de fluage (pf) et de la pression limite (pl) avec l’augmentation de la température, tandis que la variation du module pressiométrique (EM) est moins marquée. Les résultats montrent une quasi-réversibilité des effets d’un cycle de chauffage dans la gamme de température testée alors que l’effet d’un cycle de refroidissement n’est que partiellement réversible. Pour les essais soumis à plusieurs cycles thermiques, le premier cycle induit des variations de paramètres toujours plus importantes que les cycles suivants. Une analyse approfondie de l’évolution des propriétés thermiques (la conductivité thermique (λ), la capacité thermique volumique (Cv) et la diffusivité thermique (D)) des sols en fonction de la teneur en eau, de la masse volumique sèche et de la température montre une augmentation de ces paramètres avec l’augmentation de w et ρd et une augmentation de λ des éprouvettes illitiques du côté sec de l’optimum avec l’augmentation de la température de 1 à 70 °C. En résumé, pour les pieux énergétiques, les résultats obtenus en laboratoire montrent une modification de la capacité portante due à la variation des paramètres du sol illitique sous l’effet des cycles thermiques / Energy geostructures involve providing a direct heat exchange with the ground through integrated systems in the foundations or geotechnical structures. The incorporation of heat exchangers in geostructures produces a cyclic variation of the temperature in the adjacent soil. Therefore, there are important scientific questions about the effect of temperature variations on hydro-mechanical soil parameters in general, and particularly for sensitive clay soils. The main objective of this thesis is to improve the understanding and the quantification of the impact of temperature variation on the bearing capacity of geothermal piles. Currently, the design of the bearing capacity of deep foundations is based on the results of in situ penetrometer and pressuremeter tests. Herein, experimental methods are developed to carry out these tests in laboratory conditions. Mini-penetrometer tests were carried out on samples compacted at different initial states and subjected to temperature variations ranging from 1 to 70 °C. The results showed a significant change in the studied parameters: the cone resistance (qc) and the friction sleeve resistance (fs) for an illitic material compacted on the dry side of the compaction curve. Mini-pressuremeter tests performed on the same illitic compacted soil in a thermo-regulated metric scale container, showed a decrease in creep pressure (pf) and limit pressure (pl) with increasing temperature, while the variation of pressuremeter modulus (EM) is less pronounced. The results showed a quasi-reversibility of the effect of a heating cycle through the temperature range tested, while the effect of a cooling cycle was only partially reversible. In the case of several thermal cycles, the first cycle induced more important parameter variations than the subsequent cycles, and at the end of the experimentation. Further analysis of the evolution of the thermal properties (thermal conductivity (λ), heat capacity (Cv) and thermal diffusivity (D)) within heating and cooling process as a function of soil water content and dry density showed an increase of these parameters with the increase of initial values of w and ρd, and an increase of λ in the dry side of the compaction curve with increasing temperature from 1 to 70 °C. In summary, for the energy piles driven in the clay soils, some modifications in the bearing capacity have to be taken into account due to the variation of the hydro-mechanical parameters of the soil induced by thermal cycles
9

Thermo-mechanical behaviour of ground-source thermo-active structures

Hassani Nezhad Gashti, E. (Ehsan) 29 November 2016 (has links)
Abstract High energy prices and new environmental policies have made geothermal energy increasingly popular. The EU, including Finland, aims to increase the use of renewable energy resources and reduce carbon emissions. Geothermal energy pile foundations, so-called energy piles, are considered a viable alternative technology for producing energy instead of traditional methods. Geothermal heat pump systems are economically efficient and renewable environmentally friendly energy production systems in which the ground acts as a heat source in winter and as a heat sink in summer. Energy piles are economical systems, as they act as dual-purpose structures in energy production and load transfer from buildings to the ground, avoiding extra expenses in ground boring solely for energy production. However, use of ground heat exchangers (GHE) for energy production in energy piles can result in temperature variations in the pile shaft and surrounding soil, in turn affecting the thermo-mechanical behaviour of pile shaft and soil in both structural and geotechnical terms. Despite large numbers of energy piles being installed, there is still a lack of reliable information and experience about the thermo-mechanical behaviour of these structures and their energy efficiency in cold climates. This thesis investigated the efficiency performance of energy pile foundations and their productivity in cold climates by considering different groundwater flow effects and short-term imbalanced seasonal thermal loadings. The structural and geotechnical bearing capacity of different types of energy piles fitted with GHEs were also evaluated, using numerical models, and the possibility of collapse due to use of thermal systems was examined. Use of the model to compare the performance of different GHEs in terms of their efficiency revealed that at a particular fluid flow rate, double U-tube systems had greater productivity than other systems tested. The results also indicated that using energy piles under medium groundwater flow can improve the productivity of systems by around 20% compared with saturated conditions with no groundwater flow. It was also concluded that in a design context, the structural bearing capacity of piles needs to be reduced due to the additional thermal stresses induced by heating/cooling pile operations. / Tiivistelmä Kasvaneet energiakustannukset ja kiristyneet ympäristösäädökset ovat lisänneet geotermisten energiaratkaisujen suosiota. EU, mukaan lukien Suomi, on asettanut tavoitteekseen lisätä uusiutuvien energialähteiden käyttöä ja vähentää hiilidioksidipäästöjä. Geotermistä energiaa hyödyntävä paaluperustukset, niin kutsutut energiapaalut, tarjoavat uudenlaisen teknologian vähäpäästöisen energian tuottamiseen. Geotermiset lämpöpumppujärjestelmät, maalämpöpumput, ovat taloudellisia ja ympäristöystävällisiä energiantuotantomenetelmiä, jotka talviaikaan siirtävät maaperään varastoitunutta energiaa rakennuksen lämmittämiseen ja vastaavasti jäähdyttävät rakennusta kesällä siirtämällä lämpöä maaperään. Energiapaalujen taloudellisuus syntyy siitä, että ne pystyvät palvelemaan rakennusta kahdessa roolissa. Ne ovat osa rakennuksen energiajärjestelmää ja toimivat samalla myös kantavana rakenteena, joka siirtää rakennuksen kuormia perustuksilta maaperään. Lämpöpumppujärjestelmän kytkeminen paaluihin voi johtaa lämpötilan vaihteluun paaluissa sekä niitä ympäröivässä maaperässä, mikä puolestaan vaikuttaa paalujen ja maaperän lämpömekaanisiin, rakenteellisiin sekä geoteknisiin ominaisuuksiin. Vaikka energiapaaluja on asennettu jo paljon, ei paalujen lämpömekaanisesta käyttäytymisestä tai energiatehokkuudesta kylmien ilmastojen alueilla ole vielä paljoa tutkittua tietoa. Tässä väitöstutkimuksessa selvitettiin numeerisesti energiapaalujen rakennuspaikan pohjaolosuhteista riippuvaa tuottopotentiaalia Skandinaavisissa olosuhteissa ja ilmastossa. Tarkastelut kohdistuivat erityisesti pohjavesivirtauksen sekä vuodenaikojen ja ilman lämpötilan vaihtelun vaikutuksiin. Tutkimuksessa arvioitiin myös paalujen lämpötilan vaihtelujen vaikutuksia paalujen geoteknisiin ja rakenteellisiin ominaisuuksia sekä kestävyyteen. Numeeristen simulaatiotulosten perusteella betonipaaluun asennetun U-putkirakenteen avulla saavutetaan paras tuottopotentiaali. Tulokset osoittivat, että kohtalainen pohjaveden virtaus parantaa systeemin tuottoa noin 20 % verrattuna tilanteeseen, jossa vedellä kyllästetyssä maassa ei tapahdu pohjaveden virtausta. Analyysitulokset osoittavat myös, että paalujen lämpötilavaihteluista aiheutuvat lisäjännitykset vähentävät paalujen kantokykyä, mikä tulee ottaa huomioon paalujen mitoituksessa.
10

Assessment of Thermally Enhanced Geo-Energy Piles and Walls

Elkezza, Omar A.A. January 2023 (has links)
Geo-energy piles and walls have long been recognized as a promising way to reduce carbon dioxide emissions while providing renewable energy. However, enhancing the thermal performance of these structures has remained a signif-icant challenge. This thesis evaluated five different approaches to improving the thermal performance of geo-energy piles and walls, through a series of experiments using a fully instrumented testing rig. The first approach involved adding graphTHERM powder to concrete to double its thermal conductivity, boosting heat transfer efficiency by an impressive 50% to 66%. The second approach tested slag-based geopolymer concrete as a sustainable construc-tion material for geo-energy piles and walls, reducing CO2 emissions by 44.5% while improving thermal performance by 14% to 21%. The third approach in-volved testing thermally enhanced soils at the geo-energy structures/soil inter-face, resulting in an 81% improvement in heat transfer efficiency. The fourth approach utilized innovative phase change material (PCM) heat exchangers that increased heat transfer efficiency by 75% and 43% in heating and cooling operations, respectively. Finally, incorporated PCM-impregnated light weight aggregates at the interface of the structure soil, significantly increasing tem-perature difference and reducing thermal deformation of geo-energy struc-tures.Overall, these innovative approaches made a significant contribution to enhancing the thermal performance of geo-energy piles and walls. However, approaches four and five, which involve utilizing PCM heat exchangers and PCM-impregnated LWA's, respectively, showed extra benefits in dropping the thermal effect on soils and reducing the thermal damage on those structures. These techniques offer great promise for improving the thermal performance of geo-energy structures.

Page generated in 0.4748 seconds