1 |
Smart Student TableAlbazi, Waleed January 2018 (has links)
The objective of this study is to develop what is called aStudent table, which is designed specifically for school children in emergency circumstances, so it will be suitable for partial solutions for the problems facing children in refugee camps, who are forced to leave their homes and schools. The idea of the study focuses on the creation of the Student table so that the generation of electricity will be suitable for lighting and illumination with the use of some electronic devices used in daily school needs like laptops, so the solar cell system will be connected to a small generator through a hybrid system. A fully functional prototype has been built as part of the study. When the system works through the hybrid route for lighting and illumination the solar system will generate the power needed and when the sun light disappears the Power can be generated by bike pedals. The generation of electricity by the hybrid system is considered as an effective and environmentally friendly option with economic benefits.
|
2 |
Mathematical analysis of global solutions to the Boltzmann equation / ボルツマン方程式の大域解の数理解析Sakamoto, Shota 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第20455号 / 人博第805号 / 新制||人||194(附属図書館) / 28||人博||805(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 清水 扇丈, 教授 足立 匡義, 准教授 木坂 正史, 教授 森本 芳則 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
3 |
Energy Supply in Refugee Camps / Energiförsörjning i flyktinglägerTrinh, Jenny, Wieselblad, Eric January 2018 (has links)
The global population of forcibly displaced people has increased during the last years, due to persecution, conflict, violence, or human rights violations. Since 1997 the number of forcibly displaced people increased from 33.9 million people to 65.6 million at the end of 2016, amongst which 22.5 million are refugees living in refugee camps around the world. These camps are usually hastily built shelters with the main objective to provide immediate protection and safety, therefore these camps rarely have power supply that can satisfy more than the basic, essential needs. However, the average length of time during which a refugee spends in exile is approximately 20 years and in order sustain shelters for such a long time, there is also a need to satisfy the long-term energy demands. The purpose of this thesis is to chart the energy-related problems in refugee camps and to evaluate potential energy supply solutions with respect to given indicators, with a setting in Central- and Eastern Africa. The given indicators are availability, scalability, adoptability, environmental impact and cost. The different energy solutions that are chosen for evaluation are fuel generators, solar power, biogas, wind power and fuel cell. A literature study is conducted with the limitation to mainly examine camps between the equator and southern Europe and where the assumption of every refugee camp having approximately the same problems is made. The literature study of different refugee camps revealed that most energy-related problems could be derived from insufficient energy supply, which results in problems with cooking and lack of lighting. The available energy resources in refugee camps are mainly firewood or charcoal, that emits hazardous gases during combustion. The collection of firewood as well as the lack of lighting also puts people, mainly women and children, at safety risks. Furthermore, the lack of decent lighting also reduces the amount of productive hours. To solve the problems, the evaluation of the chosen energy solutions could work as a foundation for projects on implementing energy systems in a refugee camp setting. The evaluation provides an overview of how the energy solutions works in relation to the given indicators and thus their ability to provide energy in an economic, social and environmental manner. Furthermore, the results from this thesis have been compiled into a project manual, with summarizing tables of each energy solution in regards to the indicators. Every refugee camp has their own needs and conditions that has to be met in order to provide sufficient energy solutions, which makes it difficult to fully assess the evaluated energy solutions. Therefore, there is a need for further work that would include a case study. By conducting a case study, the needs and conditions for the chosen refugee camp can be taken into consideration, thus resulting in a solution that could better meet the demand. In most cases, the energy related problems in refugee camps are not one solution issues but could rather be solved by combining different methods of energy access. The evaluated energy solutions could therefore be combined to meet the demands of refugee camps. / Antalet människor som är på flykt i världen har ökat under de senaste åren på grund av förföljelse, konflikt, våld eller kränkningar av mänskliga rättigheter. Sedan 1997 har antalet människor på flykt ökat från 33,9 miljoner till 65,6 miljoner i slutet av 2016, varav 22,5 miljoner är flyktingar som lever i flyktingläger runt om i världen. Flyktingläger är ofta konstruerade under nödsituationer, där det främsta syftet är att ge omedelbart skydd och säkerhet. Syftet med flyktinglägren är därmed att agera som ett tillfälligt skydd, vilket innebär att de sällan är utrustade med strömförsörjning som kan tillgodose mer än de mest grundläggande och nödvändiga behoven. Trots att lägren är konstruerade som tillfälliga lösningar, tillbringar en flykting i genomsnitt 20 år i exil. För att kunna hålla goda levnadsförhållanden under en sådan lång tid i ett flyktingläger, finns ett behov av att tillgodose lägren med långsiktiga, hållbara energilösningar. Syftet med kandidatexamensarbetet är att kartlägga energirelaterade problem i flyktingläger och att utvärdera potentiella lösningar för energiförsörjning med avseende på givna indikatorer, med fokus på Central- och Östafrika. De angivna indikatorerna är tillgänglighet, skalbarhet, acceptans, miljöpåverkan och kostnad. De olika energilösningarna som utvärderas är bränslegeneratorer, solkraft, biogas, vindkraft och bränsleceller. En litteraturstudie genomförs med den huvudsakliga begränsningen att granska läger mellan ekvatorn och södra Europa och där ett antagande om att varje flyktingläger står inför liknande problem görs. Kartläggningen av energirelaterade problem i flyktingläger visar att de flesta problem kan kopplas till en otillräcklig energiförsörjning, vilket i sin tur resulterar i problem med matlagning samt brist på belysningsmöjligheter. De tillgängliga energiresurserna är huvudsakligen ved eller kol, som vid förbränning avger hälsofarliga gaser. Insamling av ved samt brist på belysning utsätter även invånarna, främst kvinnor och barn, för säkerhetsrisker. Bristen på ordentlig belysning reducerar även antalet produktiva timmar för människorna i ett flyktingläger. För att kunna bidra med en lösning till problemen kan den utförda utvärderingen av de valda energilösningarna användas som en grund för andra projekt, som ämnar att implementera energisystem i flyktingläger. Utvärderingen ger en översikt av hur energilösningarna fungerar i förhållande till de givna indikatorerna och därmed deras förmåga att tillhandahålla energi på ett ekonomiskt, socialt och miljömässigt sätt. Resultaten från kandidatexamensarbetet har även sammanställts i en projektmanual, med en sammanställning för varje energilösning med avseende på indikatorerna. Varje flyktingläger har dock unika behov och förutsättningar som måste tillgodoses för att tillhandahålla tillfredställande energilösningar, vilket försvårar en fullständig bedömning av de utvärderade energilösningarna. Det finns därför ett behov av ytterligare undersökning innefattande en fallstudie som kan ta hänsyn till de behov och förutsättningar som kan finnas. Slutligen kräver de energirelaterade problemen i ett flyktingläger oftast en kombination av olika energilösningar, eftersom att en sådan bättre kan möta ett flyktinglägers energibehov.
|
4 |
Utilizing Micro-Thermal Networks for Energy Demand ResponseVan Ryn, Jessica January 2022 (has links)
In recent years, the electrification of technology that is traditionally powered by fossil fuels has become a popular means to reduce greenhouse gases (GHG). Although the intentions are well founded, the strain on the electrical grid is seldom taken into consideration. When there is increased load on the grid, it is typically met by fossil fuel peaking power plants or additional fossil fuel infrastructure. Depending on the electrical generation technology deployed and the power plant efficiency, electrification can result in an increase in GHG emissions. To make better informed decisions for GHG reductions, policy makers and engineers are in need of smart energy systems, such as the Integrated Community Energy and Harvesting (ICE-Harvest) system. ICE-Harvest systems work with and can respond to changes on the electrical grid, providing demand response. The system creates electrical demand when renewable generation sources are available, reduces demand when fossil fuel generation is present, and can offset centralized generation using distributed combined heat and power resources.
In this thesis, steps to design a micro-thermal network (MTN) for the ICE-Harvest system are outlined and different operational strategies are explored that respond to grid behaviour in real time. How fast the thermal network reacts to grid level variations is defined as the response time. The physical response of the thermal network is a temperature set point change. A design map was developed presenting multiple parameters that contribute to the response time, the trade-offs between them, and the corresponding temperature difference achievable.
Through developing models in the equation-based object-oriented software Dymola, the viability for real time temperature set point changes in micro-thermal networks was explored. The MTN and the energy transfer stations (ETSs) that transfer energy between the thermal network and the buildings have been modeled. Yearly system simulations were conducted to analyze the corresponding performance of the MTN in terms of electrical requirements and overall GHG emissions. An operational range of the system was presented demonstrating the flexibility of the ICE-Harvest system.
The simulation results have identified the ICE-Harvest system as a viable means to provide demand response to the grid and to reduce GHG emissions. Future work and recommendations will be made to improve the response of the system and further reduce electrical consumption and GHG emissions. / Thesis / Master of Science in Mechanical Engineering (MSME)
|
5 |
A market entry strategy of Metso for the biomass-based power generation solutions market in South AfricaClark, Steven James 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2011. / The global energy industry is actively moving toward renewable energy sources in order to meet the ever-increasing demand for energy in a sustainable manner. The South African government, however, has only recently begun creating an environment which is truly conducive to investment into the renewable energy industry.
Metso, a Finnish multi-national corporation, has a strong global position in the field of biomass-based power generation for heat, power or combined heat and power applications. The corporation has developed a modular biomass-based power generation solution for power generation in the 3MW to 10MW range, which is highly automated and can essentially operate without the need for extensive human intervention and is known as the Metso Bio-energy Solution.
Considering the current state of the South African energy environment, Metso management requested the researcher to investigate the opportunities that exist in the South African market for Metso’s Bio-energy Solution, and to propose a market entry strategy which Metso should follow in order to enter the South African market.
In the findings, the researcher observed that South Africa has a clear potential for the development of a bio-energy industry for power generation, although the limited availability of biomass in certain regions and the various harvesting methods in industries such as the forestry and sugar industries do restrict the access to this resource. The municipal solid waste industry appears to be an area of interest as well, although very little information exists regarding the volumes of waste available and sorting practices, which may be required in order to access these resources.
Interviews were held with experts in the field of energy, renewable energy and energy policy in order to obtain opinions on the market potential for Metso’s Bio-energy Solution. The general perception of all interviewees was that the technology has its place within the South African energy mix. The interviewees, however, did confirm that there currently appears to be a major focus on wind and solar energy in the country, although biomass technology may well be a better solution due to its baseload capabilities. It was found that the local policy environment, the lack of government initiative on renewable energy licensing and unclear tariff structures have all inhibited the proliferation of the renewable energy industry. In many cases, frustration with power outages and policy delays has caused companies to invest in biomass co-firing facilities for their own consumption.
The factors for success for biomass-based technologies in the South African market would appear to be directly linked to job creation potential, access to reliable and sustainable biomass resources and access to investment capital, from both private equity and the state. It is the recommendation of the researcher that Metso enters into a joint venture with a large international environmental finance company, which would base their business model on the technology provided by Metso, whilst securing the political and financial support for projects of this nature in the country.
|
Page generated in 0.0904 seconds