101 |
ENHANCEMENT OF RYDBERG ATOM INTERACTIONS USING DC AND AC STARK SHIFTSBohlouli-Zanjani, Parisa January 2010 (has links)
This thesis reports the use of both dc and ac electric fi eld induced resonant
energy transfer, RET, between cold Rydberg atoms as a useful tool for enhancement
of interatomic interactions. A general technique for laser frequency stabilization and
its suitability for Rydberg atom excitation is also demonstrated.
RET between cold Rydberg atoms was used to determine Rydberg atom energy
levels. The ⁸⁵Rb atoms are laser cooled and trapped in a magneto-optical trap.
For energy level determination experiment, atoms were optically excited to 32d₅/₂
Rydberg states. The two-atom process 32d₅/₂ + 32d₅/₂ → 34p₃/₂+30g is resonant at
an electric fi eld of approximately 0.3 V/cm through dipole dipole interaction. The
experimentally observed resonant fi eld, together with the Stark map calculation is
used to make a determination of the ⁸⁵Rb ng-series quantum defect to be ⵒg(n =
30) = 0.00405(6).
The ac Stark eff ect was also used to induce RET between cold Rydberg atoms.
When a 28.5 GHz dressing field was set at speci fic fi eld strengths, the two-atom
dipole-dipole process 43d₅/₂ + 43d₅/₂ → 45p₃/₂ + 41f was dramatically enhanced,
due to induced degeneracy of the initial and final states. This method for enhancing
interactions is complementary to dc electric- field-induced RET, but has more
flexibility due to the possibility of varying the applied frequency. At a dressing field
of 28.5 GHz all of the participating levels (43d₅/₂, 45p₃/₂ and 41f) show signi cant
shifts and these give a complicated series of resonances. An oscillating electric
fi eld at 1.356 GHz was also used to promote the above RET process where the
atoms are initially excited to the 43d₅/₂ Rydberg states. The ac fi eld strength was
scanned to collect RET spectra. Di fferent resonances were observed for diff erent
magnetic sublevels involved in the process. Compared to the higher dressing field
frequency of 28.5 GHz, the choice of dressing frequency of 1.356 GHz, which is
slightly blue detuned from the 41f - 41g transition, and structure of the spectra
may be understood, by analogy with the dc field case.
|
102 |
Ensemble fluorescence resonance energy transfer analysis of RNA polymerase clamp conformationWang, Dongye. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Chemistry and Chemical Biology." Includes bibliographical references (p. 133-142).
|
103 |
Nonlinear optical studies of the metal-electrolyte interface /Matranga, Christopher. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, 2002. / Includes bibliographical references. Also available on the Internet.
|
104 |
The role of mechanical tension in fibronectin matrix assembly /Baneyx, Gretchen W., January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 86-103).
|
105 |
Structural changes of fibronectin during cell interactions and adsorption to surfaces measured using fluorescence resonance energy transfer /Baugh, Jeffrey Loren. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 71-79).
|
106 |
Optical studies of layered inorganic solids : a novel phase transition and energy transfer studies /Larochelle, Christie L., January 2001 (has links)
Thesis (Ph. D.) in Physics--University of Maine, 2001. / Includes vita. Includes bibliographical references (leaves 96-102).
|
107 |
Understanding of conjugated polymer morphology formation and the structure-property relationships from the single chain level to the bulk levelAdachi, Takuji 04 March 2014 (has links)
Morphology is the origin of life and function. Defining and designing morphology, understanding the relationship between morphology and function, is an essential theme in a number of research areas. In conjugated polymer research, the major obstacles to achieving these goals are the heterogeneity and complexity of conjugated polymer films. In the study presented in this dissertation, various single molecule spectroscopy techniques were used as an approach to minimize the complexity of these problems. By using excitation polarization spectroscopy, it was discovered that single chains of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) assume a highly ordered rod conformation despite the fact that the morphology of bulk films is known to be amorphous. The comparison of results from experiments and a coarse grained bead-on-a-chain simulation suggested that single chains have the ability to use a thermally induced defect to maximize [pi]-[pi] stacking and adopt a rod conformation as a stable conformation. Bias-induced centroid spectroscopy (BIC) on highly ordered single chains demonstrated that the energy transfer scale could be an order of magnitude larger than the value typically measured for bulk films. It was further demonstrated that such an extraordinary long energy transfer was not a unique property of single chains but was also observed in aggregates as long as the morphology was ordered. These studies were extended to another model compound poly(3-hexylthiophene) (P3HT) to generalize the mechanism of morphology formation and the structure-property relationship. For P3HT, it was shown that side-chains were a very important factor in determining single chain conformation, while the conformation of MEH-PPV was not affected by side-chains. By controlling the side-chains, both ordered and disordered P3HT chains were obtained. The comparison of results from experiments and an energy transfer model simulation quantified that energy transfer was at least twice as efficient in ordered chains as in disordered chains. In aggregates, the difference between the energy transfer efficiency of ordered and disordered morphology was even larger than that in the case of single chains. These results could suggest that there is a very fast energy transfer mechanism that occurs through interchain interactions when chains are packed in ordered fashion. / text
|
108 |
Transition intensities and energy transfer of lanthanide ions in crystals蔡慶銘, Chua, Hing-ming, Michael. January 1994 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
|
109 |
Electronic analog computer solution of unsteady heat transfer equations including conduction, convection and radiationFarrington, Franklin DeLoe, 1933- January 1963 (has links)
No description available.
|
110 |
ENHANCEMENT OF RYDBERG ATOM INTERACTIONS USING DC AND AC STARK SHIFTSBohlouli-Zanjani, Parisa January 2010 (has links)
This thesis reports the use of both dc and ac electric fi eld induced resonant
energy transfer, RET, between cold Rydberg atoms as a useful tool for enhancement
of interatomic interactions. A general technique for laser frequency stabilization and
its suitability for Rydberg atom excitation is also demonstrated.
RET between cold Rydberg atoms was used to determine Rydberg atom energy
levels. The ⁸⁵Rb atoms are laser cooled and trapped in a magneto-optical trap.
For energy level determination experiment, atoms were optically excited to 32d₅/₂
Rydberg states. The two-atom process 32d₅/₂ + 32d₅/₂ → 34p₃/₂+30g is resonant at
an electric fi eld of approximately 0.3 V/cm through dipole dipole interaction. The
experimentally observed resonant fi eld, together with the Stark map calculation is
used to make a determination of the ⁸⁵Rb ng-series quantum defect to be ⵒg(n =
30) = 0.00405(6).
The ac Stark eff ect was also used to induce RET between cold Rydberg atoms.
When a 28.5 GHz dressing field was set at speci fic fi eld strengths, the two-atom
dipole-dipole process 43d₅/₂ + 43d₅/₂ → 45p₃/₂ + 41f was dramatically enhanced,
due to induced degeneracy of the initial and final states. This method for enhancing
interactions is complementary to dc electric- field-induced RET, but has more
flexibility due to the possibility of varying the applied frequency. At a dressing field
of 28.5 GHz all of the participating levels (43d₅/₂, 45p₃/₂ and 41f) show signi cant
shifts and these give a complicated series of resonances. An oscillating electric
fi eld at 1.356 GHz was also used to promote the above RET process where the
atoms are initially excited to the 43d₅/₂ Rydberg states. The ac fi eld strength was
scanned to collect RET spectra. Di fferent resonances were observed for diff erent
magnetic sublevels involved in the process. Compared to the higher dressing field
frequency of 28.5 GHz, the choice of dressing frequency of 1.356 GHz, which is
slightly blue detuned from the 41f - 41g transition, and structure of the spectra
may be understood, by analogy with the dc field case.
|
Page generated in 0.0831 seconds