• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the Transient Effects of High Energy Subsystems on High-Performance Aerospace Systems

Gvozdich, Grant Gregory 12 December 2011 (has links)
As directed energy technology continues to evolve and become a viable weapon alternative, a need exists to investigate the impacts of these applications without a "plug-and-check" method, but rather with an analysis governed by fundamental principles. This thesis examines the transient thermal loads that a high-energy weapon system introduces into a high performance aircraft using fundamental thermodynamic and heat transfer analyses. The high-energy weapon system employed in this research contains power storage, power conditioning equipment, optics, and a solid-state laser. The high-energy weapon system is integrated into the aircraft by a dedicated thermal management system connected to the onboard air and fuel fluid networks. The dedicated thermal management system includes heat exchangers, thermal storage, microchannel coolers, valves, and pumps. Governing equations for the electric directed energy weapon subsystem and thermal management system are formulated for each system component and modeled in Mathwork's Simulink™. System models are integrated into a generic, high-performance aircraft model created as part of the Air Force Research Laboratory's Integrated Vehicle Energy Technology Demonstration (INVENT) program. The aircraft model performs a defined mission profile, firing the directed energy weapon during the high-altitude, transonic cruise segment. When firing a 100-kilowatt directed energy weapon system operating at 16.9% efficiency, large thermal transients quickly heat downstream onboard systems. Real-time heat rejection causes temperature spikes in avionic and environment systems that exceed allowable operation constraints. The addition of thermal storage to the thermal management system mitigates thermal impacts downstream of the directed energy weapon by delaying the time thermal loads are rejected to aircraft, thereby reducing peak and average loads. Although thermal storage is shown to mitigate peak loads in downstream onboard systems, thermal closure is yet to be achieved. This research presents a general and fundamental approach to investigating the thermal impacts of a directed energy weapon system on a high-performance aircraft. Although specific cases are analyzed, this general approach to model development and simulation is conducive to component and system customization for many other cases. Additionally, the supplementation of models with analytical, semi-empirical, and empirical data further tailors model development to each user's need while increasing the potential to enhance accuracy and efficacy. Without the material expenses of a "plug-and-check" method, component and system level modeling of the directed energy weapon system and high-performance aircraft provides valuable insight into the thermal responses of highly-coupled systems. / Master of Science
2

The Strength of the Russian Energy Weapon in Ukraine

Galash, Anastasiya V. 01 January 2012 (has links)
The Russian implementation of the "energy weapon" plays an important role in understanding the complex Eurasian political dynamism that exists and influences relationships. Endowed with a greater amount of gas supplies, Russia has utilized its natural monopoly in an endeavor to maneuver its political objectives within the international scene. Its drive to espouse the "energy weapon" envelopes itself within Russia’s turbulent past and desire to regain political prominence experienced throughout much of the twentieth century. Thus, studying Russian motivations in employing gas resources allows political scientists, statespersons and other government intellectuals to better understand the economic backdrop affecting Eurasian affairs and potentially formulate strategic policy that would garner net positive outcomes with little to no negative externalities. Studying such information would prove to enhance relations, positively or negatively, for Ukrainian, Russian, and European authorities when conducting domestic and foreign policy.

Page generated in 0.036 seconds