111 |
Including state excitation in the fixed-interval smoothing algorithm and implementation of the maneuver detection method using error residualsSevim, Alaettin. January 1990 (has links)
Thesis (M.S. in Engineering Science)--Naval Postgraduate School, December 1990. / Thesis Advisor: Titus, Harold A. Second Reader: Burl, Jeff. "December 1990." Description based on title screen as viewed on April 2, 2010. DTIC Identifier(s): Noise processing, maneuver detection. Author(s) subject terms: Kalman filter, smoothing, noise process, maneuver detection. Includes bibliographical references (p. 98-99). Also available in print.
|
112 |
The Effectiveness of Contextual Learning on Physics Achievement in Career Technical EducationArcand, Scott Andrew 02 August 2017 (has links)
<p> The purpose of this casual-comparative study was to determine if students being taught the Minnesota Science Physics Standards via contextual learning methods in Project Lead the Way (PLTW) Principles of Engineering or the PLTW Aerospace Engineering courses, taught by a Career Technical Education (CTE) teacher, achieve at the same rate as students in a physics course taught by a science teacher. The PLTW courses only cover the standards taught in the first trimester of physics. The PLTW courses are two periods long for one trimester. Students who successfully pass the PLTW Principles of Engineering course or the PLTW Engineering Aerospace course earn one-half credit in physics and one-half elective credit. The instrument used to measure student achievement was the district common summative assessment for physics. The Common Summative Assessment scores were pulled from the data warehouse from the first trimester of the 2013-2014 school year. Implications of the research address concepts of contextual learning especially in the Career Technical Education space. The mean score for Physics students (30.916) and PLTW Principles of Engineering students (32.333) was not statistically significantly different. Students in PLTW Principles of Engineering achieved at the same rate as students in physics. Due to the low rate of students participating in the Common Summative Assessment in PTLW Aerospace (four out of seven students), there is not enough data to determine if there is a significant difference in the Physics A scores and PLTW Aerospace Engineering scores.</p><p>
|
113 |
Computational Studies on Fluid and Particle DynamicsZhang, Chenguang 17 July 2017 (has links)
This dissertation is divided into two parts. The first part includes chapter 2 to 4, which focus on development and application of numerical algorithm on particle and fluid simulation. Starting with a pure granular system in a driven cavity setup (Chapter 2), we move on to the immersed boundary simulation of fluid solid interaction (Chapter 3). This part ends with a coupled immersed boundary-discrete particle implementation. The second part includes Chapter 5 and Appendix A, each deals with an independent problem and focuses more on the theoretical aspects. Chapter 5 deals with a classic fluid dynamics problem of thermal wave induced net flux. Appendix A studies the underestimation of solver accuracy when the solution has singularities, and analyzes the cause of the underestimation using a simple theoretical model.
|
114 |
Tribological And Dynamical Study Of An Automotive Transmission SystemLi, Meng 25 July 2017 (has links)
The transmission system is critical for automotive and heavy duty equipment due to its prominent role in the powertrain system, which is often challenged with degraded torque capacity and harsh dynamic response. Simulation-guided design can provide appropriate guidelines to resolve these problems with virtual analyses. In current study, the tribological and dynamical study of an automatic transmission is performed at two levels: a wet clutch and powertrain.
In this dissertation, tribological study is performed for a wet clutch based on the thermohydrodynamic (THD) analysis that takes the following factors into account.
The groove effect (depth, area, and pattern) is investigated for lubrication analysis;
The elastic-plastic asperity contact model is used to predict the contact pressure;
The heat transfer during the entire cycle of engagement from slip to lock to detachment is covered;
The engagement time and the temperature profile are predicted for torque and thermal analysis.
With large engagement cycles, the friction lining of a wet clutch is worn off due to the material degradation at high load/temperature condition. By relating the wear behavior with the mechanism of thermal degradation and thermomechanical degradation, a physics-based wear model is proposed for the first time to analyze the wear process in a wet clutch. The predicted wear rate falls within nearly 95% confidence interval of the test results. Discrepancies of simulation are primarily due to limited availability of input data and model assumptions. Therefore, an uncertainty quantification analysis of the wear model is performed using the Monte Carlo simulations. In addition, a comprehensive parametric analysis of the clutch wear is considered with various factors, including groove design (waffle pattern shows the minimum wear), material properties and operational configurations (rotational speed plays the most influential role).
The dynamics of transmission directly affects the performance of the powertrain. The coupling effects of the key transmission components are examined. Of particular interests are the stick-slip behavior of the wet clutch and backlash of the gear train. Through simulation of the powertrain, the main source and the pattern of vibration propagation in the driveline are examined. Major vibration is observed during inappropriate clutch engagement.
|
115 |
Polyelectrolyte and hydrogel stabilized liquid crystal droplets for the detection of bile acidsDeng, Jinan 01 January 2017 (has links)
Liquid crystal (LC) droplets show great potential as an optical probe for sensor applications due to their large surface areas and stimuli-response director configurations. Bile acids with amphipathic properties, which are formed in liver and secreted into the small intestine, play an important role in the digestion of fats and fat-soluble vitamins. After the digestion process, most of bile acids are recycled back to the liver and ready for the next digestion. Only a few of them are excreted into body fluids. However, there is significant increases in the concentration level of bile acids in body fluids for patients with liver and intestinal diseases, which makes bile acids a biomarker for the early diagnosis of liver and intestinal diseases. Chromatography-mass spectrometry and electrochemical sensors are common methods for the detection of bile acids. However, these detection methods are time consuming, require relatively large sample volumes, and expensive instruments. To date, there is still a demand in the development of simple, low-cost and user-friendly sensing platforms for the rapid detection of bile acids in clinical settings. In this dissertation, two simple and low-cost LC droplet-based sensing platforms were developed for the rapid and real-time detection of bile acids with a small sample volume. First, a miniaturized LC droplet-based sensor platform was designed and fabricated by the integration of polyelectrolytes/surfactant/sulfate β-cyclodextrin (β-CD) complex-stabilized LC droplets into a microfluidic channel for the selective detection of bile acids in a small amount of solution, in which the β-CD immobilized at the surface of the LC droplets acts as a selective barricade and the director configuration of the LC droplets serves as an optical probe. Second, a flexible LC droplet-based sensor platform was formed by the integration of surfactant-stabilized LC droplets in biopolymer hydrogel films. The LC droplet-based hydrogel film was cut into small sheets for the real-time detection of bile acids in a small amount of solution, in which the configuration transition of LC droplets induced by the interaction of bile acids with the surfactants absorbing on the surface of LC droplets serves as an optical probe. Cholic acid (CA) and deoxycholic acid (DCA), which are the most related to the liver and intestinal diseases, were detected in phosphate buffered saline (PBS) solution in the presence of the interference species of uric acid (UA) and ascorbic acid (AA) in this dissertation. These miniaturized LC droplet-based sensor platforms can be used to selectively detect CA and DCA in the presence of UA and AA. The detection limit of these sensor platforms for CA and DCA can be tuned by the number of LC droplets and the nature of surfactants. Furthermore, we find that these sensor platforms are more sensitive for DCA with the shorter response time and lower detection limit over CA due to their difference in hydrophobicity. These miniaturized 5CB droplet-based sensor platforms are easily handled, allowing the rapid and real-time detection of bile acids in a small sample volume in the presence of interference species, which are highly desirable for the "point-of-care" analysis of bile acids.
|
116 |
Quantification of the Effect of Degassing on the Microstructure, Chemistry and Estimated Strength of Nanocrystalline AA5083 PowderHofmeister, Clara 01 January 2016 (has links)
Degassing is a critical heat treatment process in aluminum powder metallurgy, where powders are subjected to high temperature in vacuum to remove volatile gaseous species absorbed in and adsorbed on powders. For cryomilled aluminum alloy powders with nanoscale features, degassing can cause accelerated microstructural and chemical changes including removal of volatiles, grain growth, dislocation annihilation, and formation of dispersoids. These changes can significantly alter the mechanical behavior of consolidated components based on their contributions to strength. In this study, cryomilled AA5083 (0.4 wt.% Mn; 4.5 wt.% Mg; minor Si, Fe, Cu, Cr, Zn, Ti; balance Al) powders were degassed at 200, 300, 350, 410 and 500°C at a ramp rate of 68.3 °C?hr-1 for a soak time of 8 hours with a vacuum at or below 6.5 x 10-3 Pa. Grain size, dislocation density and dispersoid phase constituents were examined as a function of degassing temperature by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, equipped with high angle annular dark field detector and X-ray energy dispersive spectroscopy. Inert gas fusion and thermal conductivity analysis were employed to determine the oxygen, nitrogen and hydrogen concentrations as a function of degassing temperature. Grain size in as-cryomilled powders (21 ~ 34 nm) increased as a function of degassing temperature, and reached a maximum value of 70 ~ 80 nm for powders degassed at 500°C for 8 hours. The dislocation density of 1.11 x 1015 m-2 in as-cryomilled powders decreased to 1.56 x 1014 m-2 for powders degassed at 500°C for 8 hours. The Al6(MnFeCr) phase was the most commonly observed dispersoid, mostly on samples degassed at or above 300°C. Volume fraction increased with degassing temperature up to 5 vol.% and the size of the dispersoids grew up to ~ 280 nm. Oxygen and nitrogen content after cryomilling were unaffected by the change in degassing temperature, but the hydrogen content decreased and reached a minimum of 45 ± 3.16 ppm for cryomilled powders degassed at 500°C for 8 hours. Grain growth was quantitatively analyzed based on the general grain growth formula and Burke's model in the presence of pinning forces. Degassing occurred in two different kinetic regimes: Harrison A kinetics at higher temperatures and Harrison B in the lower with a transition temperature of about 287°C. Burke's model exhibited a poor fit to the experimental results in higher temperature regime. Desorption of impurities during degassing was analyzed using Fickian diffusion in a spherical coordinate system and an empirical expression based on the exponential decay of average concentration. The activation energy for degassing was estimated to be 16.2 ± 1.5 kJ?mol-1. Evolutions in composition and microstructure in cryomilled powders as a function of degassing temperature were further analyzed and quantitatively correlated to the strengthening mechanisms of solid solution, grain size reduction (i.e., Hall-Petch), dislocation forest and Orowan. For consolidated AA5083 derived from cryomilled powders, strengthening by grain size reduction was the dominant mechanism of strengthening.
|
117 |
Design of surface chemical reactivity and optical properties in glassesLepicard, Antoine 01 January 2016 (has links)
Thermal poling is a technique which involves the application of a strong DC electric field to a glass substrate heated below its glass transition temperature (Tg). Following the treatment, a static electric field is frozen inside the glass matrix, effectively breaking its centrosymmetry. Historically, this treatment has been used as a way to gain access to second order non-linear optical properties in glasses. However, recent efforts have shown that the treatment was responsible for structural changes as well as surface property modifications. Our study was focused on using this technique to tailor surface properties in oxide (borosilicate and niobium borophosphate) and chalcogenide glasses. A strong emphasis was put on trying to control all changes at the micrometric scale. After poling, property changes were assessed using a set of characterization tools: the Maker fringes technique (a Second Harmonic Generation ellipsometry technique), micro-Second Harmonic Generation (µ-SHG), vibrational spectroscopy and Secondary Ion Mass Spectroscopy (SIMS). Surface reactivity in borosilicate glasses was effectively changed while in niobium borophosphate and chalcogenide glasses, the optical properties were controlled linearly and non-linearly. Finally, property changes were effectively controlled at the micrometric scale. This opens up new applications of thermal poling as a mean to design glass substrate for integrated photonics and lab-on-a-chip devices.
|
118 |
Advanced Metrology and Diagnostic Loss Analytics for Crystalline Silicon Photovoltaics.Schneller, Eric 01 January 2016 (has links)
Characterization plays a key role in developing a comprehensive understanding of the structure and performance of photovoltaic devices. High quality characterization methods enable researchers to assess material choices and processing steps, ultimately giving way to improved device performance and reduced manufacturing costs. In this work, several aspects of advanced metrology for crystalline silicon photovoltaic are investigated including in-line applications for manufacturing, off-line applications for research and development, and module/system level applications to evaluate long-term reliability. A frame work was developed to assess the cost and potential value of metrology within a manufacturing line. This framework has been published to an on-line calculator in an effort to provide the solar industry with an intuitive and transparent method of evaluating the economics of in-line metrology. One important use of metrology is in evaluating spatial non-uniformities, as localized defects in large area solar cells often reduce overall device performance. Techniques that probe spatial uniformity were explored and analysis algorithms were developed that provide insights regarding process non-uniformity and its impact on device performance. Finally, a comprehensive suite of module level characterization was developed to accurately evaluate performance and identify degradation mechanisms in field deployed photovoltaic modules. For each of these applications, case-studies were used to demonstrate the value of these techniques and to highlight potential use cases.
|
119 |
Development of enzyme-free hydrogen peroxide biosensor using cerium oxide and mechanistic study using in-situ spectro-electrochemistrySaraf, Shashank 01 January 2016 (has links)
During recent development, it has been demonstrated that cerium oxide nanoparticles (CNPs) have exhibited catalytic activity which mimics naturally existing enzymes such as superoxide dismutase (SOD) and catalase. The underlying mechanism is attributed to the modulation of oxygen vacancies on CNPs lattice by dynamic switching of the oxidation states between Ce3+ and Ce4+ due to the electron transfer resulting from the redox reaction between CNPs and reactive oxygen species such as hydrogen peroxide (H2O2). Thereby the redox potential of CNPs is dependent on the surface chemistry i.e. the surface concentration of Ce3+ and Ce4+ Currently, the ratio of Ce3+/ Ce4+ in CNPs is characterized ex-situ using XPS or TEM which involves sample drying and exposure to high energy X-rays and electron beam, respectively. Sample drying and high energy beam exposure could lead to sample deterioration. The goal of the study is to explore a technique to characterize CNPs in-situ and identify the surface chemistry of CNPs. The in-situ investigation of CNPs was carried using spectroelectrochemistry wherein the electrochemical and optical measurements are carried out simultaneously. Detailed optical characterization of two different CNPs having different catalytic activity were carried under oxidation and reduction environments. Analysis of spectra revealed widely different redox potential for CNPs which was a function of pH and composition of buffer solution. In second part of dissertation a suitable surface chemistry of CNPs is investigated to replace the enzyme in biosensor assembly to allow amperometric detection of H2O2 in physiological conditions. Upon electrochemical investigation of the physio-chemical properties of CNPs, it was found that CNPs having higher surface concentration of Ce4+ as compared to Ce3+ oxidation states, demonstrated increased catalytic activity towards H2O2. The addition of CNPs resulted in 5 orders of increment in amperometric current with a response time of 400 msec towards detection of H2O2 and exhibited excellent selectivity in presence of interfering species. Additionally, cerium oxide was successfully integrated into the biosensor assembly through the anodic electrodeposition, which allowed the transfer of electron generated from the CNPs in the redox reaction to the electrode and demonstrated successful sensing of H2O2. Furthermore, to achieve detection of H2O2 in physiological conditions, CNPs were integrated with nanoporous gold (NPG) which exhibited anti-biofouling properties. The anti-biofouling property of NPG was investigated using electrochemical techniques and showed excellent signal retention in physiological concentration of albumin proteins. The novel study targets at developing robust enzyme free biosensor by integrating the detection ability of CNPs with the anti-biofouling activity of NPG based electrode.
|
120 |
Development of In Vitro Point of Care Diagnostics (IVPCD) Based on Aptamers integrated BiosensorsSaraf, Nileshi 01 January 2019 (has links)
The global market for the medical diagnostic industry is worth 25 billion dollars in the United States and is expected to grow exponentially each year. Presently available methods for biodetection, such as immunoassays, chemiluminescence and fluorescent based assays are expensive, time consuming and require skilled labor with high-end instruments. Therefore, development of novel, passive colorimetric sensors and diagnostic technologies for detection and surveillance is of utmost importance especially in resource constrained communities. The present work focusses on developing novel and advanced in vitro biodiagnostic tools based on aptamer integrated biosensors for an early detection of specific viral proteins or small biomolecules used as potential markers for deadly diseases. Aptamers are short single stranded deoxyribonucleic acid (DNA) which are designed to bind to a specific target biomolecule. These are readily synthesized in laboratory and offers several advantages over antibodies/enzymes such as stable in harsh environment, easily functionalized for immobilization, reproducibility etc. These undergo conformational changes upon target binding and produces physical or chemical changes in the system which are measured as colorimetric or electrochemical signals. Here, we have explored the aptamer-analyte interaction on different platforms such as microfluidic channel, paper based substrate as well as organic electrochemical transistor to develop multiple compact, robust and self-contained diagnostic tools. These testing tools exhibit high sensitivity (detection limit in picomolar) and selectivity against the target molecule, require no sophisticated instruments or skilled labor to implement and execute, leading a way to cheaper and more consumer driver health care. These innovative platforms provide flexibility to incorporate additional or alternative targets by simply designing aptamers to bind to the specific biomolecule.
|
Page generated in 0.1057 seconds