• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Pasquale, Frank L. 08 1900 (has links)
A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.

Page generated in 0.0639 seconds