• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing of Boron Carbide

Cho, Namtae 07 July 2006 (has links)
The processing of boron carbide powder including sintering optimization, green body optimization and sintering behavior of nano-sized boron carbide was investigated for the development of complex shaped body armor. Pressureless sintered B4C relative densities as high as 96.7% were obtained by optimizing the soak temperature, and holding at that temperature for the minimum time required to reach terminal density. Although the relative densities of pressureless sintered specimens were lower than that of commercially produced hot-pressed B4C, their (Vickers) hardness values were comparable. For 4.45cm diameter and 1.35cm height disk shaped specimens, pressureless sintered to at least 93.0% relative density, post-hot isostatic pressing resulted in vast increases in relative densities (e.g. 100.0%) and hardness values significantly greater than that of commercially produced hot-pressed B4C. The densification behavior of 20-40nm graphite-coated B4C nano-particles was studied using dilatometry, x-ray diffraction and electron microscopy. The higher than expected sintering onset from a nano-scale powder (15008C) was caused by remnant B2O3 not removed by methanol washing, keeping particles separated until volatilization and the carbon coatings, which imposed particle to particle contact of a substance more refractory than B4C. Solid state sintering (1500-18508C) was followed by an arrest in contraction attributed to formation of eutectic liquid droplets of size more than 10X the original nano-particles. These droplets, induced to form well below known B4C-graphite eutectic temperatures by the high surface energy of nano-particles, are interpreted to have quickly solidified to form a vast number of voids in particle packing, which in turn, impeded continued solid state sintering. Starting at 22008C, a permanent liquid phase formed which facilitated a rapid measured contraction by liquid phase sintering and/or compact slumping.
2

Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection

Dong, Bin 12 1900 (has links)
Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
3

Processing-Structure-Property Relationships of Reactive Spark Plasma Sintered Boron Carbide-Titanium Diboride Composites

Lide, Hunter 08 1900 (has links)
Sintering parameter effects on the microstructure of boron carbide and boron carbide/titanium diboride composites are investigated. The resulting microstructure and composition are characterized by scanning electron microscopy (SEM), x-ray microscopy (XRM) and x-ray diffraction (XRD). Starting powder size distribution effects on microstructure are present and effect the mechanical properties. Reactive spark plasma sintering introduces boron nitride (BN) intergranular films (IGF's) and their effects on fracture toughness, hardness and flexural strength are shown. Mechanical testing of Vickers hardness, 3-point bend and Chevron notch was done and the microstructural effects on the resulting mechanical properties are investigated.
4

Development And Validation Of Two-Dimensional Mathematical Model Of Boron Carbide Manufacturing Process

Kumar, Rakesh January 2006 (has links)
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. In this process, a large current is passed through the graphite rod located at the center of the cylindrical furnace, which is surrounded by the coke and boron oxide mixture. Heat generated due to resistance heating is responsible for the reaction of boron oxide with coke which results in the formation of boron carbide. The whole process is highly energy intensive and inefficient in terms of the production of boron carbide. Only 15% charge gets converted into boron carbide. The aim of the present work is to develop a mathematical model for this batch process and validate the model with experiments and to optimize the operating parameters to increase the productivity. To mathematically model the process and understand the influence of various operating parameters on the productivity, existing simple one-dimensional (1-D) mathematical model in radial direction is modified first. Two-dimensional (2-D) model can represent the process better; therefore in second stage of the project a 2-D mathematical model is also developed. For both, 1-D and 2-D models, coupled heat and mass balance equations are solved using finite volume technique. Both the models have been tested for time step and grid size independency. The kinetics of the reaction is represented using nucleation growth mechanism. Conduction, convection and radiation terms are considered in the formulation of heat transfer equation. Fraction of boron carbide formed and temperature profiles in the radial direction are obtained computationally. Experiments were conducted on a previously developed experimental setup consisting of heat resistance furnace, a power supply unit and electrode cooling device. The heating furnace is made of stainless steel body with high temperature ceramic wool insulation. In order to validate the mathematical model, experiments are performed in various conditions. Temperatures are measured at various locations in the furnace and samples are collected from the various locations (both in radial and angular directions) in the furnace for chemical analysis. Also, many experimental data are used from the previous work to validate the computed results. For temperatures measurement, pyrometer, C, B and K type thermocouple were used. It is observed that results obtained from both the models (1-D and 2-D) are in reasonable agreement with the experimental results. Once the models are validated with the experiments, sensitivity analysis of various parameters such as power supply, initial percentage of B4C in the charge, composition of the charge, and various modes of power supply, on the process is performed. It is found that linear power supply mode, presence of B4C in the initial mixture and increase in power supply give better productivity (fraction reacted). In order to have more confidence in the developed models, the parameters of one the computed results in the sensitivity analysis parameters are chosen (in present case, linear power supply is chosen) to perform the experiment. Results obtained from the experiment performed under the same simulated conditions as computed results are found in excellent match with each other.
5

Experimental methodology to assess the effect of coatings on fiber properties using nanoindentation

Aguilar, Juan Pablo 16 August 2012 (has links)
Current body armor technologies need further improvements in their design to help reduce combat injuries of military and law enforcement personnel. Kevlar-based body armor systems have good ballistic resistance up to a certain ballistic threat level due to limitations such as decreased mobility and increased weight [1,2]. Kevlar fibers have been modified in this work using a nano-scale boron carbide coating and a marked increase in the puncture resistance has been experimentally observed. It is hypothesized that this improvement is due to the enhancement of the mechanical properties of the individual Kevlar fibers due to the nano-scale coatings. This study presents a comprehensive experimental investigation of individual Kevlar fibers based on nanoindentation to quantify the cause of the enhanced puncture resistance. The experimental setup was validated using copper wires with a diameter size in the same order of magnitude as Kevlar fibers. Results from nanoindentation did not show significant changes in the modulus or hardness of the Kevlar fibers. Scanning Electron Microscopy revealed that the coated fibers had a marked change in their surface morphology. The main finding of this work is that the boron carbide coating did not affect the properties of the individual fibers due to poor adhesion and non-uniformity. This implies that the observed enhancement in puncture resistance originates from the interaction between fibers due to the increase in roughness. The results are important in identifying further ways to enhance Kevlar puncture resistance by modifying the surface properties of fibers.
6

Synergistic methods for the production of high-strength and low-cost boron carbide

Wiley, Charles Schenck 19 January 2011 (has links)
Boron carbide (B₄C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B₄C make it a nearly ideal material for personnel and vehicular armor. B₄C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B₄C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B₄C powders. The boron carbide powder examined in this study was a submicron (0.6 μm median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form ofphenolic resin, and titanium additives in the form of 32 nm and 0.9 μm TiO₂ powders were selected. Parametric studies of sintering behavior were performed via high-temperature dilatometry in order to measure the in-situ sample contraction and thereby measure the influence of the additives and their amounts on the overall densification rate. Additionally, broad composition and sintering/post-HIPing studies followed by characterization and mechanical testing elucidated the effects of these additives on sample densification, microstructure development, and mechanical properties such as Vickers hardness and microindentation fracture toughness. Based upon this research, a process has been developed for the sintering of boron carbide that yielded end products with high relative densities (i.e., 100%, or theoretical density), microstructures with a fine (∼2-3 μm) grain size, and high Vickers microindentation hardness values. In addition to possessing these improved physical properties, the costs of producing this material were substantially lower (by a factor of 5 or more) than recently patented work on the pressureless sintering and post-HIPing of phase-pure boron carbide powder. This recently patented work developed out of our laboratory utilized an optimized powder distribution and yielded samples with high relative densities and high hardness values. The current work employed the use of titanium and carbon additives in specific ratios to activate the sintering of boron carbide powder possessing an approximately mono-modal particle size distribution. Upon heating to high temperatures, these additives produced fine-scale TiO ₂ and graphite inclusions that served to hinder grain growth and substantially improve overall sintered and post-HIPed densities when added in sufficient concentrations. The fine boron carbide grain size manifested as a result of these second phase inclusions caused a substantial increase in hardness; the highest hardness specimen yielded a hardness value (2884.5 kg/mm²) approaching that of phase-pure and theoretically-dense boron carbide (2939 kg/mm²). Additionally, the same high-hardness composition exhibited a noticeably higher fracture toughness (3.04 MPa•m¹/²) compared to phase-pure boron carbide (2.42 MPa• m¹/²), representing a 25.6% improvement. A potential consequence of this study would be the development of a superior armor material that is sufficiently affordable, allowing it to be incorporated into the general soldier’s armor chassis.
7

Novel Carborane Derived Semiconducting Thin Films for Neutron Detection and Device Applications

James, Robinson 08 1900 (has links)
Novel carborane (B10C2H12) and aromatic compounds (benzene, pyridine, diaminobenzene) copolymers and composite materials have been fabricated by electron beam induced cross-linking and plasma enhanced chemical vapor deposition (PECVD) respectively. Chemical and electronic structure of these materials were studied using X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS). UPS suggest that the systematic tuning of electronic structure can be achieved by using different aromatic compounds as co-precursors during the deposition. Furthermore, top of valence band is composed of states from the aromatic moieties implying that states near bottom of the conduction band is derived from carborane moieties. Current- voltage (I-V) measurements on the ebeam derived B10C2HX: Diaminobenzene films suggest that these films exhibit enhanced electron hole separation life time. Enhanced electron hole separation and charge transport are critical parameters in designing better neutron voltaic devices. Recently, PECVD composite films of ortho-carborane and pyridine exhibited enhanced neutron detection efficiency even under zero bias compared to the pure ortho-carborane derived films. This enhancement is most likely due to longer electron-hole separation, better charge transport or a combination of both. The studies determining the main factors for the observed enhanced neutron detection are in progress by fabricating composite films of carborane with other aromatic precursors and by altering the plasma deposition conditions. This research will facilitate the development of highly sensitive and cost effective neutron detectors, and has potential applications in spintronics and photo-catalysis.
8

Semiconducting Aromatic Boron Carbide Films for Neutron Detection and Photovoltaic Applications

Oyelade, Adeola O 12 1900 (has links)
Semiconducting aromatic-boron carbide composite/alloyed films formed by plasma enhanced chemical vapor deposition from carborane and aromatic precursors have been demonstrated to be excellent detectors for thermal neutrons because of the large 10B cross section. The electronic properties of these films derived from XPS show that the properties of boron carbide can be tuned by co-deposition of aromatic compounds and carborane. Aromatic doping results in narrower indirect band gaps (1.1 - 1.7 eV vs ~3 eV for orthocarborane-derived boron carbide without aromatics) and average charge transport lifetimes (as long as 2.5 ms for benzene-orthocarborane and 1.5 - 2.5 ms for indole-orthocarborane) that are superior to those of boron carbide (35 µs). The films also show enhanced electron-hole separation that is also superior to those of boron carbide where the states at the top of the valence band is made of aromatic components while states at the bottom of the conduction band is a combination of aromatic and carborane moeities. These properties result in greatly enhanced (~850%) charge collection, relative to films without aromatic content, in thermal neutron exposures at zero-bias, and are gamma-blind. Such films are therefore excellent candidates for zero-bias neutron detector applications. These properties also show little variation with increasing aromatic content beyond a critical concentration, indicating that at some point, excess aromatic results in the formation of regions of polymerized aromatic within the film, rather than in additional carborane/aromatic linkages. While previous studies on these aromatic-boron carbide materials indicate the potential for neutron detection due to the narrowed band gap, enhanced electron-hole separation and charge transport lifetimes compared to the boron carbide counterpart, the mechanisms of charge transport and photoconductivity (important for photovoltaic applications) of these materials have remained unexplored. Properties such as narrowed band gap, efficient electron-hole separation and long charge transport lifetimes, are also desirable in photovoltaic applications. This, plus ease of fabrication and environmental robustness makes aromatic-boron carbide films promising candidates for photovoltaic applications. Plasma enhanced chemical vapor deposition (PECVD) has been used to synthesize these aromatic-boron carbide composite films by co-deposition of pyridine, aniline or indole with orthocarborane/metacarborane. Film chemical composition and bonding were characterized by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), variable angle spectroscopic ellipsometry (VASE) and (in collaboration with Dowben Group at UNL) charge transport and photoconductivity measurements. Results show narrowed band gaps (indirect) where the top of the valence band is made up of the aromatic moiety and the conduction band minimum us made of aromatic and carborane moeities, improved charge carrier mobilities that is stoichiometry and frequency dependent (aniline-orthocarborane films). Photoconductivity measurement results obtained from ~2.6:1 indole-orthocarborane film show fourth quadrant conductivity. I(V) curves indicate a photocurrent of 2.36 µA at zero bias, with an appreciable open-circuit voltage of 1V. The ability for these aromatic-boron carbide films to operate at zero bias for both neutron detection and photovoltaic applications is an excellent advantage that indicates low cost of operation of these materials.
9

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Pasquale, Frank L. 08 1900 (has links)
A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.
10

INFLUENCE OF PROCESSING VARIABLES ON MICROSTRUCTURE DEVELOPMENT AND HARDNESS OF BULK SAMPLES OF TWO NOVEL CERAMICS PREPARED BY PLASMA PRESSURE COMPACTION

Gireesh, Guruprasad 18 May 2006 (has links)
No description available.

Page generated in 0.066 seconds