• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resonant transmission through negative permittivity materials

Varady, Koloman 21 April 2011
At the heart of the field of photonics is the control of the reflection and transmission of light. Plasmonics looks at this problem of control of electromagnetic radiation in the context of surface plasmon polaritons (SPP). SPPs are propagating electromagnetic modes localized at the interfaces between media with positive and negative permittivities. Their excitation can accompany the enhancement of transmission, reflection, or absorption of EM radiation. There are a number of ways to excite SPPs and this work looks at several geometries and analyzes the transmission and reflection characteristics using a numerical approach based on the finite element method.<p> The first method of excitation is by incident evanescent wave that was totally internally reflected from an earlier interface. It is shown that an evanescent wave can excite SPPs and create resonant transmisison. It is also found that high values of dissipation limit transmission and instead create resonant absorption. The second method involves the modulation of the negative permittivity of the plasma slab itself. Numerical results are compared to analytical ones and are in good agreement because harmonics of the solution above the first are negligible. An investigation of transmission through a plasma slab with a single thin diffraction grating placed nearby follows. Analytical and numerical calculations show that a single thin grating is sufficient to create transmission resonance. It is found that for large values of diffraction grating modulation parameter, higher harmonics, usually not accounted for in analytical solutions, results in discrepancies between analytical and numerical results. The next geometry considered is of a plasma layer with only part of it having modulated permittivity. The presence of modulation of only part of the plasma layer is shown to create transmission and reflection resonances. By tailoring parameters of the system, it is shown how the resonant frequencies can be shifted. The final geometry considers a copper grating beside a plasma and transmission of a radio frequency wave. Even though the copper used here in this simulation is very absorbing, there are ranges of frequencies when transmission or reflection are enhanced.
2

Resonant transmission through negative permittivity materials

Varady, Koloman 21 April 2011 (has links)
At the heart of the field of photonics is the control of the reflection and transmission of light. Plasmonics looks at this problem of control of electromagnetic radiation in the context of surface plasmon polaritons (SPP). SPPs are propagating electromagnetic modes localized at the interfaces between media with positive and negative permittivities. Their excitation can accompany the enhancement of transmission, reflection, or absorption of EM radiation. There are a number of ways to excite SPPs and this work looks at several geometries and analyzes the transmission and reflection characteristics using a numerical approach based on the finite element method.<p> The first method of excitation is by incident evanescent wave that was totally internally reflected from an earlier interface. It is shown that an evanescent wave can excite SPPs and create resonant transmisison. It is also found that high values of dissipation limit transmission and instead create resonant absorption. The second method involves the modulation of the negative permittivity of the plasma slab itself. Numerical results are compared to analytical ones and are in good agreement because harmonics of the solution above the first are negligible. An investigation of transmission through a plasma slab with a single thin diffraction grating placed nearby follows. Analytical and numerical calculations show that a single thin grating is sufficient to create transmission resonance. It is found that for large values of diffraction grating modulation parameter, higher harmonics, usually not accounted for in analytical solutions, results in discrepancies between analytical and numerical results. The next geometry considered is of a plasma layer with only part of it having modulated permittivity. The presence of modulation of only part of the plasma layer is shown to create transmission and reflection resonances. By tailoring parameters of the system, it is shown how the resonant frequencies can be shifted. The final geometry considers a copper grating beside a plasma and transmission of a radio frequency wave. Even though the copper used here in this simulation is very absorbing, there are ranges of frequencies when transmission or reflection are enhanced.
3

Transmission And Propagation Properties Of Novel Metamaterials

Sahin, Levent 01 January 2009 (has links) (PDF)
Metamaterials attracted significant attention in recent years due to their potential to create novel devices that exhibit specific electromagnetic properties. In this thesis, we investigated transmission and propagation properties of novel metamaterial structures. Electromagnetic properties of metamaterials are characterized and the resonance mechanism of Split Ring Resonator (SRR) structure is investigated. Furthermore, a recent lefthanded metamaterial structure for microwave regime called Fishnet-type metamaterial is studied. We demonstrated the left-handed transmission and negative phase velocity in Fishnet Structures. Finally, we proposed and successfully demonstrated novel approaches that utilize the resonant behavior of SRR structures to enhance the transmission of electromagnetic waves through sub-wavelength apertures at microwave frequency regime. We investigated the transmission enhancement of electromagnetic waves through a sub-wavelength aperture by placing SRR structures in front of the aperture and also by changing the aperture shape as SRR-shaped apertures. The incident electromagnetic wave is effectively coupled to the sub-wavelength aperture causing a strong localization of electromagnetic field in the sub-wavelength aperture. Localized electromagnetic wave gives rise to enhanced transmission from a single sub-wavelength aperture. The proposed structures are designed, simulated, fabricated and measured. The simulations and experimental results are in good agreement and shows significant enhancement of electromagnetic wave transmission through sub-wavelength apertures by utilizing proposed novel structures. Radius (r) of the sub-wavelength aperture is approximately twenty times smaller than the incident wavelength (r/&amp / #955 / ~0.05). This is the smallest aperture size to wavelength ratio in the contemporary literature according to our knowledge.
4

Numerical study of optical properties of single and periodic nanostructures : from nanoantennas to enhanced transmission metamaterials / Etude numérique des propriétés optiques de nanostructures uniques et périodiques : des nano- antennes aux méta-matériaux à transmission

Al-Aridhee, Tahseen 16 June 2016 (has links)
L ’intérêt des nano-particules pour le domaine de l ’optique visible a été suscité lors du premier rapport rédigé par Faraday en 1857 et qui a initié les bases de la production de nanoparticules métalliques en vue de leur propriété optiques inattendues (coloration des solutions). Plus récemment, le contrôle et le guidage de la lumière basés sur l’excitation de résonance plasmon dans les nanostructures a permis beaucoup d’applications liées à la vie quotidienne et impliquant la lumière. La résonance plasmonique de structures métalliques estun phénomène essentiel qui conduit à des propriétés optiques uniques à travers l’interaction de la lumière avecles électrons libres du métal. L’excitation de la résonance plasmon localisé (LSPR) permet d’exalter localement l’énergie électromagnétique comme dans le cas des nano-antennes mais aussi d’acheminer la lumière à travers des canaux de dimensions sub-l sur de grandes distances distances grâce à l’excitation du Plasmonde Surface Propagatif (PSP). Au cours de cette thèse, nous avons étendu un algorithme existant afin de calculer la réponse optique (sections efficaces de diffusion et d’absorption) de NPs ayant une forme géométrie quelconque. Ce type de NP anisotrope (vis-à-vis de la polarisation incidente) peut présenter à la résonance plasmonique une section efficace de diffusion 25 fois supérieure à celle géométrique. De plus, une étude systématique importante a été effectuée afin d’optimiser la géométrie de tels Nps.En ce qui concerne la PSP qui est impliqué dans la transmission exaltée à travers les matrices d’ouvertures annulaires AAA, nous avons entrepris une étude systématique des propriétés de l’excitation du mode particul particulier sans coupure de ces nano - guides. Il s’agit du mode Transverse Electrique et Magnétique (TEM). Une étude numérique complète est alors effectuée pour correctement concevoir la structure avant qu’elle ne soit expérimentalement fabriquée et caractérisée. Pour palier certaines contraintes expérimentale, une structure inclinée est proposée et étudiée dans le cas d’un métal parfaitement conducteur. Nous avons démontrée numériquement et analytiquement certaines propriétés intrinsèques de la structure montrant un coefficient de d’au moins 50% d’un faisceau incident non polarisé indépendamment des conditions d’éclairage (polarisation,angle et plan d’incidence). Lorsque le mode TEM est excité, le flux laminaire de l’énergie à travers la structure présente une déviation géante sur de très petites distances inférieures à la longueur d’onde. Les résultats présentés dans cette thèse pourraient être considérés comme une contribution importante à la compréhension du phénomène de transmission exaltée basé sur l’excitation de ce type de mode guidé. / The release of the rst report by Faraday in 1857 set the foundation of the production of metal nanoparticlesand their unexpected optical properties (coloring). More recently, controlling and guiding light via plasmonicresonance in nanostructures enable a lot of applications affecting everyday life that involves light. Plasmonresonance of metallic structures is a key phenomenon that allows unique optical properties through the interactionof light with the free electrons of the metal. The excitation of Localized Surface Plasmon Resonance(LSPR) leads to turn-on large local enhancements of electromagnetic energy as within antennas or to routelight as waveguide to desired region with high transmission through the excitation of Propagating SurfacePlasmon (PSP). During this thesis, we have developed an existing algorithm in order to calculate the opticalresponse of NPs of any shape. We have especially determined the localized energy enhancement factor interm of optical response of nano-antenna. This anisotropic (polarization dependent) NPs type can feature, atplasmon resonance, scattering efciency factor higher than 25. Moreover, an important systematic study hasbeen performed in order to optimize design of such NPs.Concerning the PSP that are involved in the enhanced transmission through Annular Aperture Arrays (AAAs),we systematically study the properties of the excitation of the peculiar Transverse ElectroMagnetic (TEM) guidedmode inside such nano-apertures. A complete numerical study is performed to correctly design the structurebefore it is experimentally characterized. For reasons associated to fabrication constraints and efciency,a slanted AAA made in perfectly conducting metal is proposed and studied. We numerically and analyticallydemonstrate some intrinsic properties of the structure showing a transmission coefcient of at least 50%ofan un-polarized incident beam independently of the illumination configuration (polarization, angle, and planeof incidence). At the TEM peak transmission, the laminar flow of the energy through the structure can exhibitgiant deviation over very small distances ( ). The results presented in this thesis could be considered as animportant contribution to the understanding of the enhanced transmission phenomenon based on the excitationof guided modes
5

A modified enhanced transmission line theory as a solution to wiring configurations inconsistent with the classical transmission line theory - Application to vehicle harnesses / Une théorie des lignes de transmission améliorée et modifiée comme solution à des configurations de câbles incompatibles avec la théorie des lignes de transmission classique - Application aux faisceaux de câbles automobiles

Chabane, Sofiane 10 June 2014 (has links)
Cette thèse présente, dans un premier temps, une nouvelle approche pour traiter les lignes de transmission, appelée la Théorie des Lignes de Transmission Améliorée et Modifiée (TLTAM). Cette extension du formalisme classique de la théorie des lignes de transmission est directement dérivée des équations de Maxwell et ne se limite pas à la seule prise en compte du mode transverse électromagnétique (TEM). Tout en conservant la simplicité du formalisme classique, cette extension aboutit à la définition de paramètres linéiques évolués et associés au mode antenne de la ligne de transmission. Cette solution présente l’avantage d’être compatible avec les noyaux de calcul existants, tout en palliant certaines limitations de la théorie des lignes de transmission (TLT) classique. LA TLTAM est tout d’abord définie pour le cas élémentaire d’une ligne de transmission à conducteur unique. Elle est ensuite généralisée au cas d’un nombre quelconque de conducteurs. Les matrices de paramètres linéiques correspondants sont alors définies. Les capacités de cette nouvelle théorie sont démontrées et validées au moyen de confrontations avec la solution directe des équations de Maxwell et de résultats de mesure. Dans un deuxième temps, le traitement d’une ligne de transmission multiconducteur située à distance d’un plan de référence conducteur est effectué au moyen d’une nouvelle approche désignée sous le nom de Théorie des Lignes de Transmission à Double Référence Intégrée (TLTDRI). Cette approche permet de simplifier l’évaluation des paramètres linéiques du faisceau en scindant le problème initial en deux sous-ensembles de lignes de transmission couplées. Le premier sous-ensemble est composé d'un fil conducteur du faisceau choisi arbitrairement et le plan de référence et constitue le sous-ensemble externe. Le deuxième sousensemble est composé uniquement des fils conducteurs du faisceau, en l’absence du plan de référence et constitue un sous-ensemble interne dont la référence locale est le fil choisi précédemment. On montre alors que seul le sous-ensemble externe nécessite le calcul de paramètres linéiques évolués associés à TLTAM. Le calcul des paramètres linéiques dans le système à référence unique constituée par le plan de référence, est reconstitué à partir de formules de passage permettant leur expression à partir des paramètres linéiques des deux sousensembles. Cette approche est validée et ses résultats sont en très bon accord avec ceux fournis par un calcul numérique direct des équations de Maxwell ainsi que ceux de la TLTAM. Elle permet une simplification très significative du traitement de l’interaction entre le faisceau de câble et la structure conductrice de référence. / This thesis presents, in a first step, a new approach to deal with transmission lines called the Modified Enhanced Transmission Line Theory (METLT). This extension of the classical formalism of the transmission line theory (TLT) is directly derived from Maxwell's equations without the restriction to the transverse electromagnetic (TEM) mode. This extension leads to the definition of enhanced per-unit-length (p.u.l.) parameters taking into account the antenna mode of the transmission line, while it keeps the simplicity of the classical formalism. This solution presents the advantage of being compatible with the existing TLT solvers while overcoming some limitations of the classical TLT. The METLT is firstly developed for the simple case of a single conductor transmission line. It is then generalized to the case of any number of conductors. The corresponding matrices of the p.u.l. parameters are then calculated. The capabilities of this new theory are demonstrated and validated by the means of comparisons with results obtained through a rigorous resolution of Maxwell's equations and measurements results. In a second step, a multi-conductor transmission line sufficiently far from the reference ground plane is assessed through a new approach called: Embedded Double Reference Transmission Line Theory (EDRTLT). This approach allows the simplification of the calculation of the harness p.u.l. parameters by splitting the first set of wires above a ground plane into two subsets of coupled transmission lines. The first subset consists in a conducting wire chosen arbitrarily and the reference ground plane and forms the external subset. The second subset consists only in the conducting wires of the harness, in the absence of the ground plane, and forms an internal subset which local reference is the wire chosen previously. We show that only the external subset requires the calculation of the enhanced p.u.l. parameters with the METLT. The calculation of the harness p.u.l. parameters in the system with a single reference, which is the ground plane only, is made through transformation formulae that allow their extraction from the p.u.l. parameters of the two subsets. This approach is validated and its results are in a very good agreement with those obtained by a rigorous resolution of Maxwell's equations and those of the METLT. It allows a great simplification to assess the interaction between the harness and the reference conducting structure.
6

Dispersion Engineering : Negative Refraction and Designed Surface Plasmons in Periodic Structures

Ruan, Zhichao January 2007 (has links)
The dispersion property of periodic structures is a hot research topic in the last decade. By exploiting dispersion properties, one can manipulate the propagation of electromagnetic waves, and produce effects that do not exist in conventional materials. This thesis is devoted to two important dispersion effects: negative refraction and designed surface plasmons. First, we introduce negative refraction and designed surface plasmons, including a historical perspective, main areas for applications and current trends. Several numerical methods are implemented to analyze electromagnetic effects. We apply the layer-KKR method to calculate the electromagnetic wave through a slab of photonic crystals. By implementing the refraction matrix for semi-infinite photonic crystals, the layer-KKR method is modified to compute the coupling coefficient between plane waves and Bloch modes in photonic crystals. The plane wave method is applied to obtain the band structure and the equal-frequency contours in two-dimensional regular photonic crystals. The finite-difference time-domain method is widely used in our works, but we briefly discuss two calculation recipes in this thesis: how to deal with the surface termination of a perfect conductor and how to calculate the frequency response of high-Q cavities more efficiently using the Pad\`{e} approximation method. We discuss a photonic crystal that exhibits negative refraction characterized by an effective negative index, and systematically analyze the coupling coefficients between plane waves in air and Bloch waves in the photonic crystal. We find and explain that the coupling coefficients are strong-angularly dependent. We first propose an open-cavity structure formed by a negative-refraction photonic crystal. To illuminate the physical mechanism of the subwavelength imaging, we analyze both intensity and phase spectrum of the transmission through a slab of photonic crystals with all-angle negative refraction. It is shown that the focusing properties of the photonic crystal slab are mainly due to the negative refraction effect, rather than the self-collimation effect. As to designed surface plasmons, we design a structured perfectly conducting surface to achieve the negative refraction of surface waves. By the average field method, we obtain the effective permittivity and permeability of a perfectly conducting surface drilled with one-dimensional periodic rectangle holes, and propose this structure as a designed surface plasmon waveguide. By the analogy between designed surface plasmons and surface plasmon polaritons, we show that two different resonances contribute to the enhanced transmission through a metallic film with an array of subwavelength holes, and explain that the shape effect is attributed to localized waveguide resonances. / QC 20100817

Page generated in 0.0952 seconds