• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'ensemble de rotation autour d'un point fixe d'homéomorphisme de surface

Le Roux, Frédéric 26 November 2008 (has links) (PDF)
Etant donné un point fixe pour un homéomorphisme de surface, on peut définir un ensemble de rotation autour du point fixe, qui est un invariant de conjugaison locale. Ce mémoire commence l'étude de cet invariant et de ses liens avec d'autres propriétés dynamiques : en particulier l'existence d'orbites périodiques, la différentiabilité au point fixe, l'indice de Poincaré-Lefschetz lorsque le point fixe est isolé.
2

Étude de l'ensemble de rotation local / Study of the Local Rotation Set

Conejeros, Jonathan 12 October 2015 (has links)
Dans cette thèse nous nous intéressons à la dynamique locale autour d'une sous-variété compacte invariante et à la théorie du nombre de rotation. Dans [Nai82] V. A. Naishul' a montré que parmi les difféomorphismes du plan isotopes à l'identité qui fixent 0, qui préservent l'aire (ou analytiques) et dont la différentielle en $0$ est une rotation, l'angle de cette rotation est un invariant de conjugaison topologique. Ce résultat de Na\u{\i}shul$'$, a été généralisé dans plusieurs directions (voir [GP95], [GLP96] et [Pon12]). Par exemple en dimension supérieure, dans [GP95] J.-M. Gambaudo et E. Pécou ont considéré des difféomorphismes de $\R^{n+2}$ qui possèdent un tore $\T^n$ de dimension $n$ invariant dont la dynamique est topologiquement conjuguée à une rotation irrationnelle. Ils ont défini un nombre de rotation et ont démontré que ce nombre est invariant de conjugaison topologique (par exemple lorsque le difféomorphisme préserve un volume). Dans la première partie du deuxième chapitre de cette thèse, nous proposons d'introduire une notion d'ensemble de rotation local pour les homéomorphismes locaux qui préservent une sous-variété compacte de codimension $2$ dont le fibré normal est trivial. A l'aide de cet ensemble, nous déduirons un résultat qui généralise les travaux en dimension supérieure cités plus haut. Dans [Rue85] D. Ruelle a considéré des difféomorphismes d'une surface dont le fibré tangent est trivial qui préservent une mesure. Il leur a associé un nombre réel qui a été appelé l'invariant de Ruelle. Les constructions de cette thèse nous permettront de voir cet invariant comme un ensemble de rotation local au-dessus d'une mesure. A l'aide de l'invariance par conjugaison de cet ensemble de rotation, nous allons retrouver, à la fin du deuxième chapitre, le résultat démontré par J.-M. Gambaudo et E. Ghys dans [GG97] : l'invariant de Ruelle est en fait invariant de conjugaison topologique. Soit $Homeo_0(\R^2;0)$ l'ensemble des homéomorphismes du plan $\R^2$ isotopes a l'identité qui fixent l'origine $0\in\R^2$. Récemment dans [LeR13], F. Le Roux a donné une définition de l'ensemble de rotation local autour de $0$ d'une isotopie dans $Homeo_0(\R^2;0)$ issue de l'identité, et il a posé la question suivante : cet ensemble est-il toujours un intervalle ? Dans le troisième chapitre de cette thèse, nous allons donner une réponse positive à cette question et aussi à la question analogue dans le cas de l'anneau ouvert. / In this thesis we are interested in the local dynamics around of a compact invariant sub-manifold and in the rotation number theory. In [Nai82] V.A Naihul' proved that, among analytic or area preserving diffeomorphisms in the plane which are isotopic to the identity fix $0$ and whose derivative at $0$ is a rotation, the angle of this rotation is invariant by topological conjugation. This result of Naishul' was generalized in many directions (see [GP95], [GLP96] and [Pon12]). For example in [GP95] J.-M. Gambaudo and E. Pécou considered diffeomorphisms in $\R^{n+2}$, which possess an invariant $n$-dimensional torus $\T^n$ whose dynamics restricted to the torus is topologically conjugate to an irrational rotation. They defined a rotation number, and proved that this number is invariant by topological conjugation among volume-preserving maps. In the first part of the second chapter of this thesis, we propose to introduce a notion of local rotation set for local homeomorphisms, which preserve a compact sub-manifold of codimension 2 whose normal bundle is trivial. Using this set, we will deduce a result which generalizes the above mentioned works. In [Rue85] D. Ruelle considered measure preserving diffeomorphisms of a surface whose tangent bundle is trivial. He associated to them a real number called the Ruelle invariant. The constructions made in this thesis will permit us to see this number as a local rotation set over a measure. The invariance by topological conjugation of this set will us permit, at the end of the second chapter, to prove the following result due to J.-M- Gambaudo and E. Ghys: the Ruelle invariant is invariant by topological conjugacy. Let $Homeo_0(\R^2;0)$ be the set of all homeomorphisms of the plane isotopic to the identity and which fix $0$. Recently in [LeR13] F. Le Roux gave the definition of the local rotation set around of 0 of a general isotopy $I$ in $Homeo_0(\R^2;0)$ from the identity to a homeomorphism $f$ and he asked if this set is always an interval. In the third chapter of this thesis we give a positive answers to this question and to the analogous question in the case of the open annulus.
3

Utilisation de feuilletages transverse à l'étude d'homéomorphismes préservant l'aire de surfaces / Use of transverse foliations to the study of area preserving homeomorphisms of surfaces

Yan, Jingzhi 02 December 2014 (has links)
Cette thèse concerne les homéomorphismes de surfaces.Soit f un difféomorphisme d'une surface M préservant l'aire et isotope à l'identité. Si f a un point fixe contractile isolé et dégénéré z0 avec un indice de Lefschetz égal à 1, et si l'aire de M est finie, nous prouverons au chapitre 3 que z0 est accumulé non seulement par des points périodiques mais aussi par des orbites périodiques au sens de la mesure. Plus précisément, la mesure de Dirac en z0 est la limite en topologie faible-étoile d'une suite de probabilités invariantes supportées par des orbites périodiques. Notre preuve est totalement topologique et s'applique au cas d'homéomorphismes en considérant l'ensemble de rotation local.Au chapitre 4, nous étudierons des homéomorphismes préservant l’aire et isotope à l’identité. Nous prouverons l’existence d'isotopies maximales particulières: les isotopies maximales à torsion faible. En particulier, lorsque f est un difféomorphisme ayant un nombre fini de points fixes tous non-dégénérés, une isotopie I joignant l'identité à f est à torsion faible si et seulement si pour tout point z fixé le long de I, le nombre de rotation (réel) ρ(I,z), qui est bien défini quand on éclate f en z, est contenu dans (-1,1). Nous démontrerons l'existence d'isotopies maximales à torsion faible, et nous étudierons la dynamique locale de feuilletages transverses à l'isotopie près des singularités isolées.Au chapitre 5, nous énoncerons une généralisation d'un théorème de Poincaré-Birkhoff local au cas où il existe des points fixes au bord. / This thesis concerns homeomorphisms of surfaces.Let f be an area preserving diffeomorphism of an oriented surface M isotopic to the identity. If f has an isolated degenerate contractible fixed point z0 with Lefschetz index one, and if the area of M is finite, we will prove in Chapter 3 that z0 is accumulated not only by periodic points, but also by periodic orbits in the measure sense. More precisely, the Dirac measure at z0 is the limit in weak-star topology of a sequence of invariant probability measures supported on periodic orbits. Our proof is purely topological and will works for homeomorphisms and is related to the notion of local rotation set.In chapter 4, we will define a kind of identity isotopies: torsion-low isotopies. In particular, when f is a diffeomorphism with finitely many fixed points such that every fixed point is not degenerate, an identity isotopy I of f is torsion-low if and only if for every point z fixed along the isotopy, the (real) rotation number ρ(I,z), which is well defined when one blows-up f at z, is contained in (-1,1). We will prove the existence of torsion-low maximal identity isotopies, and we will deduce the local dynamics of the transverse foliations of any torsion-low maximal isotopy near any isolated singularity.In chapter 5, we will generalize a local Poincaré-Birkhoff theorem to the case where there exist fixed points on the boundary

Page generated in 0.3373 seconds