• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human Enteropeptidase Light Chain: Bioengineering of Recombinants and Kinetic Investigations of Structure and Function

Smith, Eliot T., Johnson, David A. 01 May 2013 (has links)
The serine protease enteropeptidase exhibits a high level of substrate specificity for the cleavage sequence DDDDK∼ X, making this enzyme a useful tool for the separation of recombinant protein fusion domains. In an effort to improve the utility of enteropeptidase for processing fusion proteins and to better understand its structure and function, two substitution variants of human enteropeptidase, designated R96Q and Y174R, were created and produced as active (>92%) enzymes secreted by Pichia pastoris with yields in excess of 1.7 mg/Liter. The Y174R variant showed improved specificities for substrates containing the sequences DDDDK (kcat/KM=6.83 × 106 M-1 sec-1) and DDDDR (kcat/ KM=1.89 × 107 M-1 sec-1) relative to all other enteropeptidase variants reported to date. BPTI inhibition of Y174R was significantly decreased. Kinetic data demonstrate the important contribution of the positively charged residue 96 to extended substrate specificity in human enteropeptidase. Modeling shows the importance of the charge-charge interactions in the extended substrate binding pocket.
2

Human Enteropeptidase Light Chain: Bioengineering of Recombinants and Kinetic Investigations of Structure and Function

Smith, Eliot T., Johnson, David A. 01 May 2013 (has links)
The serine protease enteropeptidase exhibits a high level of substrate specificity for the cleavage sequence DDDDK∼ X, making this enzyme a useful tool for the separation of recombinant protein fusion domains. In an effort to improve the utility of enteropeptidase for processing fusion proteins and to better understand its structure and function, two substitution variants of human enteropeptidase, designated R96Q and Y174R, were created and produced as active (>92%) enzymes secreted by Pichia pastoris with yields in excess of 1.7 mg/Liter. The Y174R variant showed improved specificities for substrates containing the sequences DDDDK (kcat/KM=6.83 × 106 M-1 sec-1) and DDDDR (kcat/ KM=1.89 × 107 M-1 sec-1) relative to all other enteropeptidase variants reported to date. BPTI inhibition of Y174R was significantly decreased. Kinetic data demonstrate the important contribution of the positively charged residue 96 to extended substrate specificity in human enteropeptidase. Modeling shows the importance of the charge-charge interactions in the extended substrate binding pocket.
3

Bioengineering the Expression of Active Recombinant Human Cathepsin G, Enteropeptidase, Neutrophil Elastase, and C-Reactive Protein in Yeast

Smith, Eliot T 01 August 2013 (has links)
The yeasts Pichia pastoris and Kluyveromyces lactis were used to express several recombinant human proteins for further biochemical characterization. Two substitution variants of recombinant human enteropeptidase light chain (rhEPL) were engineered to modify the extended substrate specificity of this serine protease. Both were secreted as active enzymes in excess of 1.7 mg/L in P. pastoris fermentation broth. The substitution variant rhEPL R96Q showed significantly reduced specificities for the preferred substrate sequences DDDDK and DDDDR; however, the rhEPL Y174R variant displayed improved specificities for these substrate sequences relative to all other reported variants of this enzyme. The neutrophil serine proteases human cathepsin G (hCatG) and human neutrophil elastase (HNE) were expressed in P. pastoris and HNE was also expressed in K. lactis. The recombinant variants rhCatG and rHNE, with intact C-terminal extensions, were expressed as fusion proteins with the soluble heme-binding domain of cytochrome B5 (CytB5) and an N-terminal hexahistidine (6xHis) tag for purification. The CytB5 domain was linked to the native N-termini of active rhCatG and rHNE by the EPLcleavable substrate sequence DDDDK~I, where ~ is the sessile bond. These fusion proteins were directed for secretion. The yeast P. pastoris expressed up to 3.5 mg/L of EPL-activable rHNE in fermentation broth; however, only 200 μg/L of rhCatG could be produced by this method. Recombinant expression in K. lactis never surpassed 100 μg/L of activable rHNE. The CytB5 fusion domain was present in the heme-bound form, conferring a red color and 410 nm absorbance peak to solutions containing the fusion proteins. This absorbance pattern was most readily visible during the purification of CytB5-rHNE from P. pastoris. Human C-reactive protein (hCRP) and the substitution variant CRP E42Q were expressed in recombinant form and secreted by P. pastoris. Both products were found to bind phosphocholine (PCh) in the same manner as native hCRP. Difficulties encountered during purification revealed that wild type recombinant CRP (rCRP) was produced at 2 different molecular masses. The P. pastoris recombinant expression system yielded better results than K. lactis. Bioreactor-scale fermentation in a 5 L vessel facilitated expression and characterization of these recombinant proteins.

Page generated in 0.0933 seconds