1 |
Development of a reverse genetic system for human enterovirus 71 (HEV71) and the molecular basis of its growth phenotype and adaptation to mice /Phuektes, Patchara. January 2009 (has links)
Thesis (Ph.D.)--Murdoch University, 2009. / Thesis submitted to the Faculty of Health Sciences. Includes bibliographical references (leaves 204-226)
|
2 |
Decay accelerating factor is a cellular receptor for echovirus 7Clarkson, Neil Adrian January 1996 (has links)
No description available.
|
3 |
Recovery of Texas-1 Coxsackie virus from the blood of a wild rabbitO'Connor, John R. January 1957 (has links)
Thesis--Catholic Univ. of America.
|
4 |
Coxsackie B virus pathogenesis in mice /Hindersson, Maria. January 2006 (has links)
Lic.-avh. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 3 uppsatser.
|
5 |
Risk factors of hand foot mouth diseases outbreaks in kindergartens inHong KongLau, Ming-ho., 劉明昊. January 2009 (has links)
published_or_final_version / Community Medicine / Master / Master of Public Health
|
6 |
Risk factors of hand foot mouth diseases outbreaks in kindergartens in Hong KongLau, Ming-ho. January 2009 (has links)
Thesis (M.P.H.)--University of Hong Kong, 2009. / Includes bibliographical references (p. 64-67).
|
7 |
Seasonal Dynamics and Relative Persistence Potential of the Enteric Species of Enterovirus in WastewaterBrinkman, Nichole E. 17 October 2014 (has links)
No description available.
|
8 |
Studies on enteric viruses in water and sewageSellwood, Jane January 2000 (has links)
No description available.
|
9 |
Effects of poliovirus infection on mitochondrial functionKoundouris, Anna January 2001 (has links)
No description available.
|
10 |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic CellsAnagandula, Mahesh January 2016 (has links)
Several epidemiological and clinical studies have indicated a possible role of Enterovirus (EV) infection in type 1 diabetes (T1D) development. However, the exact casual mechanism of these viruses in T1D development is not known. The aim of this thesis is to study various EVs that have been shown to differ in their immune phenotype, lytic ability, association with induction of islet autoantibodies, ability to replicate, cause islet disintegration and induce innate antiviral pathways in infected pancreatic cells in vitro. Furthermore, EV presence and pathogenic process in pancreatic tissue and isolated islets of T1D patients was also studied. Studies in this thesis for first time show the detection of EV RNA and protein in recent onset live T1D patients supporting the EV hypothesis in T1D development. Further all EV serotypes studied were able to replicate in islets, causing variable amount of islet disintegration ranging from extensive islet disintegration to not affecting islet morphology at all. However, one of the EV serotype replicated in only two out of seven donors infected, highlighting the importance of individual variation between donors. Further, this serotype impaired the insulin response to glucose stimulation without causing any visible islet disintegration, suggesting that this serotype might impaired the insulin response by inducing a functional block. Infection of human islets with the EV serotypes that are differentially associated with the development of islet autoantibodies showed the islet cell disintegration that is comparable with their degree of islet autoantibody seroconversion. Suggesting that the extent of the epidemic-associated islet autoantibody induction may depend on the ability of the viral serotypes to damage islet cells. Furthermore, one of the EV strains showed unique ability to infect and replicate both in endo and exocrine cells of the pancreas. EV replication in both endo and exocrine cells affected the genes involved in innate and antiviral pathways and induction of certain genes with important antiviral activity significantly varied between different donors. Suggesting that the same EV infection could result in different outcome in different individuals. Finally, we compared the results obtained by lytic and non lytic EV strains in vitro with the findings reported in fulminant and slowly progressing autoimmune T1D and found some similarities. In conclusion the results presented in this thesis further support the role of EV in T1D development and provide more insights regarding viral and host variation. This will improve our understanding of the possible causative mechanism by EV in T1D development.
|
Page generated in 0.0617 seconds