• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Green Product Design: Aspects and practices within the furniture industry

Andersson, Malin, Koyumdzhieva, Tsvetelina January 2012 (has links)
Purpose - This paper aims to investigate how green product design has been practiced within the Swedish furniture industry. Furthermore, to investigate how green product design can reduce the negative impact on the environment. Theoretical framework - The literature used to serve as a base for this paper includes some aspects concerning Green Supply Chain Management, but fundamentally concerns green or environmentally conscious design, motivators for designing „green‟ products, such as legislation, Corporate Social Responsibility (CSR), internal policy documents and/or green guidelines/certificates, innovation, competitiveness, economic performance, brand image and reputation, and others. Consequently, factors for product design itself were discussed, such as environmentally conscious design, efficient utilization of materials, minimizing waste, time and cost efficiency, types of materials used, etc. Moreover, sustainability aspects are considered vital, namely economic, social and environmental practices, as particular attention is paid to the economic and environmental aspects. Methodology - For the purpose of this research paper, (multiple) case studies were chosen to be implemented. One face-to-face, two telephone and two Skype/online interviews were conducted based on semi-structured interview questions. The data collected is from four companies, two of them preferred to remain anonymous, i.e. Office Furniture and Office Design, and the other two were Kinnarps and Skandiform. Findings - The empirical findings gathered for this research comply with the majority of theoretical data provided. A number of the most important and applicable green product design factors, and more specifically the aim of reducing negative environmental impacts, drive companies to implement environmentally conscious design, efficient utilization of materials, minimizing waste, costs associated, types of materials used, product safety, among many others. Furthermore, economic, social and environmental (overall regarded as sustainability for the purpose of this paper) factors are taken into consideration. Economic and environmental issues were mostly discussed and pinpointed as essential. Conclusions - Green product design should follow a number of important factors in order to reduce the negative impacts on the environment. It is essential to understand a company‟s motivation for designing green products. Nevertheless, such factors as well as economic aspects regarding green design should be complementing each other.
2

Holistic biomimicry: a biologically inspired approach to environmentally benign engineering

Reap, John J. 13 November 2009 (has links)
Humanity's activities increasingly threaten Earth's richness of life, of which mankind is a part. As part of the response, the environmentally conscious attempt to engineer products, processes and systems that interact harmoniously with the living world. Current environmental design guidance draws upon a wealth of experiences with the products of engineering that damaged humanity's environment. Efforts to create such guidelines inductively attempt to tease right action from examination of past mistakes. Unfortunately, avoidance of past errors cannot guarantee environmentally sustainable designs in the future. One needs to examine and understand an example of an environmentally sustainable, complex, multi-scale system to engineer designs with similar characteristics. This dissertation benchmarks and evaluates the efficacy of guidance from one such environmentally sustainable system resting at humanity's doorstep - the biosphere. Taking a holistic view of biomimicry, emulation of and inspiration by life, this work extracts overarching principles of life from academic life science literature using a sociological technique known as constant comparative method. It translates these principles into bio-inspired sustainable engineering guidelines. During this process, it identifies physically rooted measures and metrics that link guidelines to engineering applications. Qualitative validation for principles and guidelines takes the form of review by biology experts and comparison with existing environmentally benign design and manufacturing guidelines. Three select bio-inspired guidelines at three different organizational scales of engineering interest are quantitatively validated. Physical experiments with self-cleaning surfaces quantify the potential environmental benefits generated by applying the first, sub-product scale guideline. An interpretation of a metabolically rooted guideline applied at the product / organism organizational scale is shown to correlate with existing environmental metrics and predict a sustainability threshold. Finally, design of a carpet recycling network illustrates the quantitative environmental benefits one reaps by applying the third, multi-facility scale bio-inspired sustainability guideline. Taken as a whole, this work contributes (1) a set of biologically inspired sustainability principles for engineering, (2) a translation of these principles into measures applicable to design, (3) examples demonstrating a new, holistic form of biomimicry and (4) a deductive, novel approach to environmentally benign engineering. Life, the collection of processes that tamed and maintained themselves on planet Earth's once hostile surface, long ago confronted and solved the fundamental problems facing all organisms. Through this work, it is hoped that humanity has taken one small step toward self-mastery, thus drawing closer to a solution to the latest problem facing all organisms.
3

A Method to Relate Product Tolerancing Decisions to Environmental Impacts and Costs in Manufacturing

Bradley, Donald Albert 11 July 2006 (has links)
Product tolerancing decisions made in product design have a significant effect on manufacturing environmental and cost performances by strongly influencing both the selection and operation of processing machinery. These decisions however are typically made without quantitative knowledge of their effects in manufacturing. With estimates of environmental and cost performances of manufacturing processes required to achieve specific part designs earlier in the product design cycle, designers may make more informed, and potentially better, design decisions with respect to manufacturing environmental and cost performance goals. In this thesis a method for quantifiably relating product tolerancing decisions to environmental and cost performances in manufacturing in order to provide decision support for cost and environmentally conscious design for manufacturing is developed. The method is instantiated as an Excel-based tool and exercised by two illustrative examples of increasing complexity, as well as a study of the manufacture of automotive transmission pinion gears with differing tolerance requirements. Uncertainty analysis is performed through the use of @RISK software; the uncertainty of parameters associated with manufacturing operations and machinery is captured through the use of probability density functions and Monte Carlo simulation is performed. Simulation results provide insight into the uncertainty of performance estimates and the risks associated with ensuing decision making. This method may be useful to product designers, as well as process planners, to support decision making efforts related to cost and environmental consciousness in the manufacturing phase of the product life cycle.
4

An integrated approach to environmentally conscious design and manufacturing

Goan, Meng-Jong Kuan 03 October 2007 (has links)
The problem addressed in this research was to develop an approach for the simultaneous green design of products and associated manufacturing processes including demanufacturing concerns. We propose a generic approach called Integrated Environmentally Conscious Design and Manufacturing (IECDM) which can be applied to address problems in the ECDM domain. IECDM incorporates environmental considerations into the engineering design process, thereby increasing a product's total life-cycle value (including its end-of-life value) as experienced by the customer, manufacturer, and society, while simultaneously reducing impacts on the environment caused by that product and its manufacturing processes. IECDM is a novel integration of Quality Function Deployment (QFD), Life-Cycle Assessment (LCA), Multiple Criteria Decision-Making (MCDM), and Cost-Benefit Assessment (CBA). The focus is on process, based on modification of the traditional QFD methodology to incorporate environmental issues and green product-design decisions through the life cycle design activities of synthesis, analysis, and evaluation. This dissertation presents a QFD-based IECDM approach, a mathematical CBA model, and an IDDS (Integrated Design Decision-Support) framework with a design-flow-chart application for incorporating environmental criteria into product and process eco-design. The IECDM problem is defined as: given the customer and environmental requirements, develop an integrated approach for green product design that results in maximization of the product's total life-cycle value (TLCV). Initially. through investigation in the field of ECDM, we specified a clear ECDM domain within Industrial Ecology. Then. we proposed various state-of-the-art techniques that were used to implement ECDM in the literature. After we defined the IECDM problem. we developed an integrated approach that led to a generic QFD-IECDM methodology for dealing with problems in the ECDM domain. Finally, for implementing the proposed methodology, we developed a tentative IODS framework to encourage long-term development followed by an example. / Ph. D.
5

A plan-do-check-act framework for WEEE and RoHS : a model for implementing WEEE and RoHS by integrating eco-design factors and activities into business operation and strategy.

El-Gomla, Randa A.M. January 2011 (has links)
Eco-design is relatively new and fast growing field of research due to its vital importance to the manufacturing industry and its related environmental issues such as reducing waste, and CO2 emission. A major EU programme relating to the environment is the waste of Electrical and Electronic Equipment (WEEE) directive. The (WEEE) directive specifies ten categories and a voltage range which is up to 1.000 volts AC or 1.500volts DC. The developed framework came for the implementation of Eco-design principles that helps to take into account the adaption of the (WEEE) directive and the restriction of hazard substances (RoHS) used in electrical and electronic equipments. As a result of identify gaps and needs such as a lack of a comprehensive Eco-design framework and the need to integrate it to the normal business operation. In this research the PDCA framework for Eco-design and WEEE directive will be discussed. The framework will encompass all of the Eco-design¿s implementation and integration factors and activities such as WEEE and RoHS directives, Eco-design management, Environmental legislations, Eco-design tools and considerations. The literature review covers the topic of Eco-design¿s related issues, and WEEE and RoHS directives rules. Based on comprehensive questionnaire survey of Eco-design, WEEE and RoHS issues and activities among a sample of environmentally aware companies, statistical analysis is carried out using SPSS software. Then the findings of the survey triangulated with the findings of the literature review formed the basis of the design and implementation plan of the proposed framework

Page generated in 0.1007 seconds