• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 11
  • 11
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An efficient assay for identification and quantitative evaluation of potential polysialyltransferase inhibitors

Guo, Xiaoxiao, Malcolm, Jodie R., Ali, Marrwa M., Ribeiro Morais, Goreti, Shnyder, Steven, Loadman, Paul, Patterson, Laurence H., Falconer, Robert A. 08 May 2020 (has links)
Yes / The polysialyltransferases (polySTs) catalyse the polymerisation of polysialic acid, which plays an important role in tumour metastasis. While assays are available to assess polyST enzyme activity, there is no methodology available specifically optimised for identification and quantitative evaluation of potential polyST inhibitors. The development of an HPLC-fluorescence-based enzyme assay described within includes a comprehensive investigation of assay conditions, including evaluation of metal ion composition, enzyme, substrate and acceptor concentrations, temperature, pH, and tolerance to DMSO, followed by validation using known polyST inhibitors. Thorough analysis of each of the assay components provided a set of optimised conditions. Under these optimised conditions, the experimentally observed Ki value for CMP, a competitive polyST inhibitor, was strongly correlated with the predicted Ki value, based on the classical Cheng-Prusoff equation [average fold error (AFE) = 1.043]. These results indicate that this assay can provide medium-throughput analysis for enzyme inhibitors with high accuracy, through determining the corresponding IC50 values with substrate concentration at the KM, without the need to perform extensive kinetic studies for each compound. In conclusion, an in vitro cell-free assay for accurate assessment of polyST inhibition is described. The utility of the assay for routine identification of potential polyST inhibitors is demonstrated, allowing quantitative measurement of inhibition to be achieved, and exemplified through assessment of full competitive inhibition. Given the considerable and growing interest in the polySTs as important anti-metastatic targets in cancer drug discovery, this is a vital tool to enable preclinical identification and evaluation of novel polyST inhibitors. / Yorkshire Cancer Research, Wellcome Trust
12

Bioassay guided fractionation of Angiotensin converting enzyme inhibitor compound from Hypericum perforatum

Mokwelu, Onyinye Vivian January 2019 (has links)
Magister Pharmaceuticae - MPharm / Due to the contribution of hypertension to various cardiovascular diseases, many studies are currently focused on identifying efficient bioactive compounds with antihypertensive activity and thus reducing the levels of cardiovascular disease. ACE inhibitors are an important component of the therapeutic regimen for treating hypertension, but due to the increase in the prevalence of side effects of synthetic compounds, alternative and complementary medicines which may consist of pure bioactive compound or a combination of various compounds from natural sources are gaining importance in overcoming hypertension. Hypericum perforatum has been studied for various activities including anti-bacterial, anti-depressant, anti-oxidant properties, but studies on its cardiovascular effects specifically ACE inhibitory activity have not yet been explored. In this study, ACEI assay-guided fractionation of the ethanol extract of Hypericum perforatum was carried out other to isolate a compound with ACE inhibition. A compound – (3-hydroxy 4, 4 dimethyl-4-butyrolactone) was isolated from an active fraction of the plant extract and was tested for ACE inhibition and its chemical structure elucidated using 1HNMR and C13NMR spectrometry and further characterized using mass spectrometry and FTIR.
13

Estudos estruturais e de química medicinal aplicados às enzimas da via glicolítica de protozoários: enolase de Plasmodium falciparum e gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi / Structural studies and medicinal chemistry on glycolysis pathway of protozoan enzymes: enolase from Plasmodium falciparum and glyceraldehyde-3-phosphate from Trypanosoma cruzi

Maluf, Fernando Vasconcelos 31 July 2015 (has links)
A melhor compreensão dos mecanismos fisiopatológicos e farmacológicos aliados a métodos modernos de investigação tornaram possível a descoberta e o desenvolvimento de fármacos para diversas doenças e disfunções orgânicas em humanos. Os fármacos desenvolvidos atualmente são resultados de intensos esforços em pesquisa por equipes multidisciplinares, impactando diretamente na qualidade de vida das diversas populações no mundo. Nesse cenário, os grupos de pesquisas estabelecidos em Universidades com foco no planejamento de fármacos para doenças tropicais têm crescido. A Malária e a Doença de Chagas figuram com especial importância, a primeira pela expressiva mortalidade mundial, enquanto a segunda pela morbidade e seus impactos na população brasileira. O tratamento de ambas possui limitações que se agravam, seja pelo baixo número de opções terapêuticas, ou pelo desenvolvimento de cepas resistentes. As enzimas investigadas nesse doutoramento, enolase (PfEnolase) de Plasmodium falciparum e gliceraldeído3fosfato desidrogenase de Trypanosoma cruzi (TcGAPDH), são componentes da via glicolítica destes parasitas e são considerados alvos moleculares atrativos para o desenvolvimento de inibidores enzimáticos, dada a importância destas enzimas no processo de obtenção de energia do parasita. Os estudos fundamentamse na busca por modulação seletiva da atividade biológica dos alvos selecionados através do desenvolvimento de novas moléculas bioativas. O estabelecimento de protocolo de expressão e purificação para enzima Pfenolase permitiu sua obtenção em quantidade e pureza suficiente para condução de estudos cinéticos e de triagem biológica, com a identificação de cinco novas classes químicas bastante promissoras; além de ensaios de cristalização, que culminaram na determinação da enzima em diversos complexos cristalográficos. Os dados estruturais produzidos foram fundamentais para condução da abordagem computacional de triagem virtual, que permitiu a identificação de 31 moléculas candidatas a inibidoras de Pfenolase. Avanços significativos foram obtidos também com a enzima TcGAPDH, destacando-se as adaptações nos processos de obtenção da proteína recombinante e ensaio cinético, condução de ensaio de bioprospecção orientada com a identificação e caracterização da molécula isolada (tilirosídeo). Novas condições de cristalização foram identificadas e poderão ser empregadas no processo de obtenção de complexos cristalográficos futuros. Adicionalmente, desenvolveu-se uma ferramenta computacional, Kinecteasy, para processamento automatizado dos dados produzidos das etapas de triagem biológica. Os trabalhos integrados de biologia estrutural e química medicinal desenvolvidos contribuem significativamente para o avanço no processo de planejamento de novos inibidores para as enzimas selecionadas. / A better understanding of the pathophysiological and pharmacological mechanisms together with the modern research methods made possible the discovery and development of drugs for several humans´ diseases. The drugs currently developed are the result of intense efforts in research of multidisciplinary teams having as a direct consequence a remarkable impact on life quality of populations all over the world. In this scenario, research groups established at universities, with their focus on drug development for tropical diseases, are increasing. Malaria and Chagas disease deserve special attention, the former by the expressive world mortality, while the second by the morbidity and its impact on Brazilian population. Treatment for both has limitations, whether by the low number of therapeutic options, or by development of resistance. The target enzymes for this PhD project, enolase (PfEnolase) of Plasmodium falciparum and glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi (TcGAPDH), are essential components of glycolytic pathway and therefore related to the parasite energy production, thus, are considered attractive molecular targets for enzyme inhibitors development. Essentially, the proposed studies seek selective modulation of the target´s biological activity through the development of new bioactive molecules. The expression and purification protocols developed for Pfenolase have allowed us to obtain recombinant protein at suitable yield and purity for conducting screening assays, which has revealed five new chemical classes as Pfenolase inhibitors. Crystallization experiments were successfully conducted and 3D structure were determined for different complexes. Structural data was essential for performing the computational approach of virtual screening, which has allowed us to identify 31 inhibitor candidates for Pfenolase. Significant advances were obtained with TcGAPDH, highlighting the adaptations on recombinant protein protocol and kinetic assay. Assay-guided bioprospecting experiments were successfully performed with identification and characterization of isolated inhibitor (tiliroside). New crystallization conditions were identified and will be employed in future co-crystallization and soaking studies. Additionally, Kinecteasy, a computational tool, were developed for automated data processing of biological screening assays. The structure and medicinal chemistry studies presented here contribute significantly in the process of drug development for the selected enzymes.
14

An investigation of protective formulations containing enzyme inhibitors : Model experiments of trypsin

Billinger, Erika January 2012 (has links)
This master thesis considers an investigation of protective formulations (ointment, cream) containing enzyme inhibitors. Model experiments have been made on the enzyme trypsin. It is well accepted that feces and urine are an important causing factor for skin irritation (dermatitis) while using diaper. A protective formulation is a physical barrier that separates the harmful substances from the skin. It can also be an active barrier containing active substances, which can be active both towards the skin, and the substances from feces and urine. By preventing contact from these substances the skin will not be harmed, at least for a period of time. A number of different inhibitors were tested towards trypsin and they all showed good inhibition, two of the inhibitors were selected to be immobilized with the help of NHS-­activated Sepharose. Immobilization of these two inhibitors leads to a lesser extent of the risk of developing allergy and also that the possible toxic effect can be minimized.
15

The identification and characterisation of novel inhibitors of the 17β-HSD10 enzyme for the treatment of Alzheimer's disease

Guest, Patrick January 2016 (has links)
In 2015, an estimated 46.8 million people were living with dementia, a number predicted to increase to 74.7 million by 2030 and 131.5 million by 2050. Whilst there are numerous causes for the development of dementia, Alzheimer's disease is by far the most common, accounting for approximately 50-70% of all cases. Current therapeutic agents against Alzheimer's disease are palliative in nature, managing symptoms without addressing the underlying cause and thus disease progression and patient death remain a certainty. Whilst the main underlying cause for the development of Alzheimer's disease was originally thought to be an abnormal deposition of insoluble amyloid-β peptide derived plaques within the brain, the failure of several high-profile therapeutic agents, which were shown to reduce the plaque burden without improving cognition, has recently prompted a shift in focus to soluble oligomeric forms of amyloid-β peptide. Such soluble oligomers have been shown to be toxic in their own right and to precede plaque deposition. Soluble amyloid-β oligomers have been identified in various subcellular compartments, including the mitochondria, where they form a complex with the 17β-HSD10 enzyme resulting in cytotoxicity. Interestingly, hallmarks of this toxicity have been shown to be dependent on the catalytic activity of the 17β-HSD10 enzyme, suggesting two therapeutic approaches may hold merit in treating Alzheimer's disease: disrupting the interaction between the 17β-HSD10 enzyme and amyloid-β peptide, or directly inhibiting the catalytic activity of the 17β-HSD10 enzyme. In 2006, Frentizole was identified as a small molecule capable of disrupting the 17β-HSD10/amyloid interaction. The work described herein details the generation of a robust screening assay allowing the catalytic activity of the 17β-HSD10 enzyme to be measured in vitro. This assay was subsequently employed for small molecule screening using two methodologies; first in a targeted approach using compounds derived from the Frentizole core scaffold, and second in an explorative manner using a diverse library of compounds supplied by the National Cancer Institute. As a result, a range of novel small molecule inhibitors of the 17β-HSD10 enzyme have been identified and the most promising characterised in terms of potency and mechanism of action. De-selection assays were developed to allow the efficient triage of hit compounds and work was begun on a cellular based assay which would allow the ability of compounds of interest to reverse a disease relevant phenotype to be assessed in a cellular environment. As such, we now have a number of hit compounds which will form the basis for the generation of subsequent series of derivatives with improved potency and specificity, as well as the robust assays required to measure such criteria, potentially leading to the generation of novel therapeutic agents against Alzheimer's disease.
16

Estudos estruturais e de química medicinal aplicados às enzimas da via glicolítica de protozoários: enolase de Plasmodium falciparum e gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi / Structural studies and medicinal chemistry on glycolysis pathway of protozoan enzymes: enolase from Plasmodium falciparum and glyceraldehyde-3-phosphate from Trypanosoma cruzi

Fernando Vasconcelos Maluf 31 July 2015 (has links)
A melhor compreensão dos mecanismos fisiopatológicos e farmacológicos aliados a métodos modernos de investigação tornaram possível a descoberta e o desenvolvimento de fármacos para diversas doenças e disfunções orgânicas em humanos. Os fármacos desenvolvidos atualmente são resultados de intensos esforços em pesquisa por equipes multidisciplinares, impactando diretamente na qualidade de vida das diversas populações no mundo. Nesse cenário, os grupos de pesquisas estabelecidos em Universidades com foco no planejamento de fármacos para doenças tropicais têm crescido. A Malária e a Doença de Chagas figuram com especial importância, a primeira pela expressiva mortalidade mundial, enquanto a segunda pela morbidade e seus impactos na população brasileira. O tratamento de ambas possui limitações que se agravam, seja pelo baixo número de opções terapêuticas, ou pelo desenvolvimento de cepas resistentes. As enzimas investigadas nesse doutoramento, enolase (PfEnolase) de Plasmodium falciparum e gliceraldeído3fosfato desidrogenase de Trypanosoma cruzi (TcGAPDH), são componentes da via glicolítica destes parasitas e são considerados alvos moleculares atrativos para o desenvolvimento de inibidores enzimáticos, dada a importância destas enzimas no processo de obtenção de energia do parasita. Os estudos fundamentamse na busca por modulação seletiva da atividade biológica dos alvos selecionados através do desenvolvimento de novas moléculas bioativas. O estabelecimento de protocolo de expressão e purificação para enzima Pfenolase permitiu sua obtenção em quantidade e pureza suficiente para condução de estudos cinéticos e de triagem biológica, com a identificação de cinco novas classes químicas bastante promissoras; além de ensaios de cristalização, que culminaram na determinação da enzima em diversos complexos cristalográficos. Os dados estruturais produzidos foram fundamentais para condução da abordagem computacional de triagem virtual, que permitiu a identificação de 31 moléculas candidatas a inibidoras de Pfenolase. Avanços significativos foram obtidos também com a enzima TcGAPDH, destacando-se as adaptações nos processos de obtenção da proteína recombinante e ensaio cinético, condução de ensaio de bioprospecção orientada com a identificação e caracterização da molécula isolada (tilirosídeo). Novas condições de cristalização foram identificadas e poderão ser empregadas no processo de obtenção de complexos cristalográficos futuros. Adicionalmente, desenvolveu-se uma ferramenta computacional, Kinecteasy, para processamento automatizado dos dados produzidos das etapas de triagem biológica. Os trabalhos integrados de biologia estrutural e química medicinal desenvolvidos contribuem significativamente para o avanço no processo de planejamento de novos inibidores para as enzimas selecionadas. / A better understanding of the pathophysiological and pharmacological mechanisms together with the modern research methods made possible the discovery and development of drugs for several humans´ diseases. The drugs currently developed are the result of intense efforts in research of multidisciplinary teams having as a direct consequence a remarkable impact on life quality of populations all over the world. In this scenario, research groups established at universities, with their focus on drug development for tropical diseases, are increasing. Malaria and Chagas disease deserve special attention, the former by the expressive world mortality, while the second by the morbidity and its impact on Brazilian population. Treatment for both has limitations, whether by the low number of therapeutic options, or by development of resistance. The target enzymes for this PhD project, enolase (PfEnolase) of Plasmodium falciparum and glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi (TcGAPDH), are essential components of glycolytic pathway and therefore related to the parasite energy production, thus, are considered attractive molecular targets for enzyme inhibitors development. Essentially, the proposed studies seek selective modulation of the target´s biological activity through the development of new bioactive molecules. The expression and purification protocols developed for Pfenolase have allowed us to obtain recombinant protein at suitable yield and purity for conducting screening assays, which has revealed five new chemical classes as Pfenolase inhibitors. Crystallization experiments were successfully conducted and 3D structure were determined for different complexes. Structural data was essential for performing the computational approach of virtual screening, which has allowed us to identify 31 inhibitor candidates for Pfenolase. Significant advances were obtained with TcGAPDH, highlighting the adaptations on recombinant protein protocol and kinetic assay. Assay-guided bioprospecting experiments were successfully performed with identification and characterization of isolated inhibitor (tiliroside). New crystallization conditions were identified and will be employed in future co-crystallization and soaking studies. Additionally, Kinecteasy, a computational tool, were developed for automated data processing of biological screening assays. The structure and medicinal chemistry studies presented here contribute significantly in the process of drug development for the selected enzymes.
17

Appropriateness of Repeated Clinical Alerts to Add Angiotensin Converting Enzyme Inhibitor Therapy in Diabetic Patients with Medicare Part D Coverage

Hryshko, Patrick, Johnson, Zac, Scovis, Nicki January 2014 (has links)
Class of 2014 Abstract / Specific Aims: To identify reasons that an angiotensin converting enzyme inhibitor (ACEi) would not be indicated in diabetic patients with repeated clinical alerts to add ACEi therapy for preservation of renal function and/or hypertension. In addition, to identify if these repeated clinical alerts to add ACEi therapy are appropriate. Methods: Eligible patient charts were reviewed by researchers using a data dictionary to complete a standardized spreadsheet with patient demographic information (age, gender, and location), type of diabetes mellitus, evidence indicative of comorbid hypertension, action taken by pharmacist in response to clinical alert (letter sent to patient and letter sent to prescriber), and rationale of that action. This data, along with SOAP notes of patient interactions, was used by researchers to classify the repeated clinical alert as appropriate or inappropriate. Main Results: There were a total of 200 charts reviewed (male n = 61 (30.5%), female n = 139 (69.5%), mean age = 70 ± 11 years). Reasons for not contacting patients again include previous failure or adverse drug reaction (n = 62, 31.0%), patient did not meet call script requirements (n = 55, 27.5%), patient did not have diabetes or hypertension (n = 20, 10.0%), potential drug-disease interaction (n = 17, 8.5%), overlapping or previously addressed alerts (1.9%), or documentation was provided for “other” reasons (n = 43, 21.5%). The previous failure or adverse drug reaction rationale was appropriate in 32 of 62 repeated clinical alerts (52%; χ2= 10.15). The patient did not have diabetes or hypertension rationale was appropriate in 11 of 20 repeated clinical alerts (55%, χ2= 2.72). The potential drug-disease interaction rationale was appropriate in 3 of 17 repeated clinical alerts (8%, χ2= 9.89). The patient did not meet call script requirements rationale was appropriate in 31 of 55 repeated clinical alerts (56%, χ2= 6.91). The overlapping or previous alerts rationale was appropriate in 2 of 3 repeated clinical alerts (67%, χ2= 0.18). The “other” rationale were appropriate in 22 of 43 repeated clinical alerts (51%, χ2= 7.21) Overall, retrigger alerts were considered appropriate 50.5% of the time compared to the predicted value of 90% (χ2= 347 > critical value = 3.84 for p = 0.05 Conclusion: There are multiple reasons pharmacists do not recommend initiating ACEi therapy in patients with diabetes. Although the Medication Management Center (MMC) has rationale of these reasons documented after individual patient interactions, there are still several reasons why a retrigger alert would be appropriate despite that rationale. In addition, retrigger alerts were not considered appropriate as frequently as expected.
18

Untersuchung zur Verzögerung der terminalen Niereninsuffizienz durch die Therapie mit ACE-Hemmern bei Patienten mit Alportsyndrom in Belgien und Spanien / Analysis of delayed end-stage renal failure through ACE-Inhibitors in Alport syndrome: Study on patients from Belgium and Spain

Stietz, Susanne Elisabeth 13 March 2012 (has links)
No description available.
19

Inhibition of farnesoic acid methyltransferase by sinefungin

Ferenz, Hans-Jürgen, Peter, Martin G., Berg, Dieter January 1983 (has links)
Sinefungin inhibited the S-adenosylmethionine-dependent farnesoic acid methyltransferase in a cell-free system containing a homogenate of corpora allata from female locusts, Locusta migratoria. The enzyme catalyzed the penultimate step of juvenile hormone biosynthesis in the insects. Culturing corpora allata in the presence of sinefungin greatly suppressed juvenile hormone production. The following in vivo effects were visible after injection of the inhibitor: increase in mortality and reduction of total haemolymph protein liter and ovary fresh weight, as well as length of terminal oocytes. Attempts to reverse these effects by topical application of the juvenile hormone analog ZR-515 (methoprene) were only partly successful. Therefore, the in vivo effects may be due to a general inhibition of methyltransferase enzymes in the insect. Sinefungin appeared to be of potential interest as the first representative of a new class of insect growth regulators.
20

Peptidomimetic Enzyme Inhibitors : Targeting M. tuberculosis Ribonucleotide Reductase and Hepatitis C Virus NS3 Protease

Nurbo, Johanna January 2010 (has links)
This thesis focuses on the design and synthesis of inhibitors targeting Mycobacterium tuberculosis ribonucleotide reductase (RNR) and hepatitis C virus (HCV) NS3 protease; enzymes that have been identified as potential drug targets for the treatment of tuberculosis and hepatitis C, respectively. Small peptides have been recognized as inhibitors of these enzymes. However, the use of peptides as drugs is limited due to their unfavorable properties. These can be circumvented by the development of less peptidic molecules, often referred to as peptidomimetics. When this work was initiated, only a few inhibitors targeting M. tuberculosis RNR had been identified, whereas the HCV NS3 protease was an established drug target. Therefore, early peptidomimetic design strategies were applied to inhibitors of RNR while the NS3 protease inhibitors were subjected to modifications in a later stage of development. It has previously been shown that peptides derived from the C-terminus of the small subunit of M. tuberculosis RNR can compete for binding to the large subunit, and thus inhibit enzyme activity. To investigate the structural requirements of these inhibitors, different series of peptides were evaluated. First, peptides from an N-terminal truncation, an alanine scan and a designed library were synthesized and evaluated to examine the importance of the individual amino acid residues. Then, a set of N-terminally Fmoc-protected peptides was evaluated, and it was found that the N-terminal group improved the affinity of the peptides even when the length of the compounds was reduced. Furthermore, potential inhibitors of less peptidic character were generated by the introduction of a benzodiazepine-based scaffold. To further reduce the peptidic character and investigate the binding properties of HCV NS3 protease inhibitors, a series of tripeptides incorporating a β-amino acid was synthesized. Inhibition was evaluated and docking studies were performed to understand how the structural changes affected inhibitory potency. The results illustrated the importance of preserving the hydrogen bonding network and retaining electrostatic interactions in the oxyanion hole between inhibitor and protein.

Page generated in 0.0784 seconds