Spelling suggestions: "subject:"alport syndrome"" "subject:"olport syndrome""
1 |
The clinical and molecular features of hereditary nephritis in Northern IrelandJefferson, Ashley January 1995 (has links)
No description available.
|
2 |
Genetics of x-linked and autosomal recessive hereditary nephropathy in the domestic dogBell, Rebecca Jane 15 May 2009 (has links)
Although typically thought of as a beloved companion or indispensable aide, the
domestic dog (Canis lupus familiaris) has emerged as an excellent model for the study
of human hereditary diseases. Many hereditary diseases of the dog have nearly identical
clinical presentations as those of the human and are, most often, caused by mutations in
the same genes. One such disease is hereditary nephropathy; an inherited glomerular
disease in the domestic dog that is similar to Alport syndrome of the human. Both
diseases are caused by mutations in the type IV collagens genes, and the disease has
nearly identical pathology and clinical presentations in the dog and human. By studying
this disease in the dog, our laboratory hopes to increase understanding of the disease so
that information that can be applied to both the human and the dog. Reported here is 1)
the development of a genomic based test to determine genotypes of mixed breed dogs in
a colony presenting with X-linked hereditary nephropathy, 2) the determination of
patterns of X-chromosome inactivation in normal dogs and dogs that are carriers of Xlinked
hereditary nephropathy, 3) the design of a synthetic COL4A5 cDNA to be used
for gene therapy treatment of dogs with X-linked hereditary nephropathy, 4) the investigation of type IV collagen gene expression changes in normal dogs and those
affected with X-linked and autosomal recessive hereditary nephropathy, and 5) the
discovery of the mutation causative for autosomal recessive hereditary nephropathy in
the English Cocker Spaniel. Utilization of the colony of dogs affected with X-linked
hereditary nephropathy (for which the causative mutation was previously identified)
allowed for comparisons of type IV collagen gene expression to English Cocker Spaniels
with autosomal recessive hereditary nephropathy. These data were critical to
identification of the gene harboring the causative mutation for autosomal recessive
hereditary nephropathy. Sequencing was performed to identify the mutation. With the
ability to test for carriers of this disease, it is our hope that breeders will use it to to
maintain the desired traits in the ECS while simultaneously eliminating the production of
affected offspring.
|
3 |
Genetics of X-linked and autosomal recessive hereditary nephropathy in the domestic dogBell, Rebecca Jane 10 October 2008 (has links)
Although typically thought of as a beloved companion or indispensable aide, the
domestic dog (Canis lupus familiaris) has emerged as an excellent model for the study
of human hereditary diseases. Many hereditary diseases of the dog have nearly identical
clinical presentations as those of the human and are, most often, caused by mutations in
the same genes. One such disease is hereditary nephropathy; an inherited glomerular
disease in the domestic dog that is similar to Alport syndrome of the human. Both
diseases are caused by mutations in the type IV collagens genes, and the disease has
nearly identical pathology and clinical presentations in the dog and human. By studying
this disease in the dog, our laboratory hopes to increase understanding of the disease so
that information that can be applied to both the human and the dog. Reported here is 1)
the development of a genomic based test to determine genotypes of mixed breed dogs in
a colony presenting with X-linked hereditary nephropathy, 2) the determination of
patterns of X-chromosome inactivation in normal dogs and dogs that are carriers of X-linked
hereditary nephropathy, 3) the design of a synthetic COL4A5 cDNA to be used
for gene therapy treatment of dogs with X-linked hereditary nephropathy, 4) the investigation of type IV collagen gene expression changes in normal dogs and those
affected with X-linked and autosomal recessive hereditary nephropathy, and 5) the
discovery of the mutation causative for autosomal recessive hereditary nephropathy in
the English Cocker Spaniel. Utilization of the colony of dogs affected with X-linked
hereditary nephropathy (for which the causative mutation was previously identified)
allowed for comparisons of type IV collagen gene expression to English Cocker Spaniels
with autosomal recessive hereditary nephropathy. These data were critical to
identification of the gene harboring the causative mutation for autosomal recessive
hereditary nephropathy. Sequencing was performed to identify the mutation. With the
ability to test for carriers of this disease, it is our hope that breeders will use it to to
maintain the desired traits in the ECS while simultaneously eliminating the production of
affected offspring.
|
4 |
Neue Therapieansätze für das Alport-Syndrom: Nephroprotektives, antifibrotisches und antiinflammatorisches Potential von Paricalcitol additiv zu Ramipril in einem Mausmodell für progressive Nierenfibrose / New therapeutic approaches for the Alport syndromes disease: nephroprotective, antifibrotic and antiinflammatory effects of Paricalcitol on top of Ramipril in a mouse model for progressie renal fibrosisHiller, Henrik 05 August 2014 (has links)
No description available.
|
5 |
Nierenschützende Wirkung von Calcitriol additiv zu Ramipril auf die Nierenfibrose im AlportMaus-Modell / Nephroprotective effects of Calcitriol additive to ramipril on renal fibrosis in Alport miceCiner, Ayse 16 March 2016 (has links)
No description available.
|
6 |
Veränderung der Nierenfunktion, des Proteoms und des Phosphorylierungsstatus der Proteine bei Alport-Mäusen unter Mycophenolat-Mofetil / Changes in kidney function, proteom and phoshorylation status of proteins in Alport COL4A3-deficient mice caused by mycophenolat mofetilLuchs, Klaus 30 November 2016 (has links)
No description available.
|
7 |
Characterization of the mutation causative for autosomal recessive hereditary nephropathy in the english cocker spaniel and analysis of gene expression in multiple models of hereditary nephropathyDavidson, Ashley Greene 15 May 2009 (has links)
The domestic dog, Canis familiaris, has over 450 naturally occurring inherited diseases. Over half of these diseases are clinically similar to human diseases making the dog an excellent model in which to study human hereditary diseases. Alport syndrome (AS), a group of heterogeneous, hereditary renal diseases, is one example of such a human disease. The disease is transmitted in three fashions: X-linked, autosomal recessive, and autosomal dominant. AS is caused by mutations in COL4α3, COL4α4 or COL4α5, all members of the type IV collagen family. The proteins products of these genes along with those of the other type IV collagen family members (COL4α1, COL4α2, and COL4α6) are structural components of basement membranes throughout the body. This dissertation describes the measurement of mRNA transcripts in two canine models of AS: a mixed breed model of X-linked AS (XLAS) and the English Cocker Spaniel (ECS) model of autosomal recessive AS (ARAS). The work done revealed a decrease in COL4α4 transcripts. The similarity between the decrease of COL4α5 in the XLAS model and that for COL4α4 in the ARAS model lead to the investigation of COL4α4 as the gene harboring the mutation causative for ARAS in the ECS. Upon sequencing COL4α4, the causative mutation was determined to be an A to T transversion in exon 3. To provide an in vitro model to study type IV collagens, a protocol was designed and experimentally validated to isolate and culture canine Sertoli cells. Canine testes cells were isolated and cultured. Cells were verified as Sertoli cells through positive identification of both SOX9 and Clusterin B proteins, along with sequence verification of SOX9 transcripts. This in vitro model provides a tool to further study the type IV collagens. Overall, the research described herein lead to the identification of the mutation causative for ARAS in the ECS. With this knowledge a genetic test was developed to test for the disease. This research also provided valuable information about the transcript levels of type IV collagens in two models of AS, and provided a novel model in which to study the type IV collagens further.
|
8 |
Characterization of the mutation causative for autosomal recessive hereditary nephropathy in the english cocker spaniel and analysis of gene expression in multiple models of hereditary nephropathyDavidson, Ashley Greene 15 May 2009 (has links)
The domestic dog, Canis familiaris, has over 450 naturally occurring inherited diseases. Over half of these diseases are clinically similar to human diseases making the dog an excellent model in which to study human hereditary diseases. Alport syndrome (AS), a group of heterogeneous, hereditary renal diseases, is one example of such a human disease. The disease is transmitted in three fashions: X-linked, autosomal recessive, and autosomal dominant. AS is caused by mutations in COL4α3, COL4α4 or COL4α5, all members of the type IV collagen family. The proteins products of these genes along with those of the other type IV collagen family members (COL4α1, COL4α2, and COL4α6) are structural components of basement membranes throughout the body. This dissertation describes the measurement of mRNA transcripts in two canine models of AS: a mixed breed model of X-linked AS (XLAS) and the English Cocker Spaniel (ECS) model of autosomal recessive AS (ARAS). The work done revealed a decrease in COL4α4 transcripts. The similarity between the decrease of COL4α5 in the XLAS model and that for COL4α4 in the ARAS model lead to the investigation of COL4α4 as the gene harboring the mutation causative for ARAS in the ECS. Upon sequencing COL4α4, the causative mutation was determined to be an A to T transversion in exon 3. To provide an in vitro model to study type IV collagens, a protocol was designed and experimentally validated to isolate and culture canine Sertoli cells. Canine testes cells were isolated and cultured. Cells were verified as Sertoli cells through positive identification of both SOX9 and Clusterin B proteins, along with sequence verification of SOX9 transcripts. This in vitro model provides a tool to further study the type IV collagens. Overall, the research described herein lead to the identification of the mutation causative for ARAS in the ECS. With this knowledge a genetic test was developed to test for the disease. This research also provided valuable information about the transcript levels of type IV collagens in two models of AS, and provided a novel model in which to study the type IV collagens further.
|
9 |
Präemptive Therapie mit Angiotensin-Converting-Enzyme-Inhibitoren verzögert Nierenersatztherapie bei heterozygoten Mutationsträgerinnen mit X-chromosomalem und autosomal-rezessivem Alport-Syndrom / Pre-emptive treatment with angiotensin converting enzyme inhibitors delays renal replacement therapy in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutationsWüst, Catharina 25 February 2013 (has links)
No description available.
|
10 |
Prognose von Patienten mit Alport-Syndrom unter Berücksichtigung einer medikamentösen Intervention und verschiedener Nierenersatzverfahren / Prognosis of patients with aport syndrome considering a medical intervention and different renal replacement therapyAssmann, Angela 21 January 2015 (has links)
No description available.
|
Page generated in 0.0581 seconds