• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 20
  • 13
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 226
  • 43
  • 40
  • 31
  • 28
  • 28
  • 21
  • 20
  • 19
  • 17
  • 15
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies of the Structure and Function of E.coli Aspartate Transcarbamoylase

Loftus, Katherine Marie January 2006 (has links)
Thesis advisor: Evan R. Kantrowitz / E.coli Aspartate transcarbamoylase (ATCase) is the allosteric enzyme that catalyzes the committed step of the de novo pyrimidine biosynthesis pathway. ATCase facilitates the reaction between L-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate. The holoenzyme is a dodecamer, consisting of two trimers of catalytic chains, and three dimers of regulatory chains. ATCase is regulated homotropically by its substrates, and heterotropically by the nucleotides ATP, CTP, and UTP. These nucleotides bind to the regulatory chains, and alter the activity of the enzyme at the catalytic site. ATP activates the rate of ATCase's reaction, while CTP inhibits it. Additionally, UTP and CTP act together to inhibit the enzyme synergistically, each nucleotide enhancing the inhibitory effects of the other. Two classes of CTP binding sites have been observed, one class with a high affinity for CTP, and one with a low affinity. It has been theorized that the asymmetry of the binding sites is intrinsic to each of the three regulatory dimers. It has been hypothesized that the second observed class of CTP binding sites, are actually sites intended for UTP. To test this hypothesis, and to gain more information about heterotropic regulation of ATCase and signal transmission in allosteric enzymes, the construction of a hybrid regulatory dimer was proposed. In the successfully constructed hybrid, each of the three regulatory dimers in ATCase would contain one regulatory chain with compromised nucleotide binding. This project reports several attempts at constructing the proposed hybrid, but ultimately the hybrid enzyme was not attained. This project also reports preliminary work on the characterization of the catalytic chain mutant D141A. This residue is conserved in ATCase over a wide array of species, and thus was mutated in order to ascertain its significance. / Thesis (BS) — Boston College, 2006. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Chemistry. / Discipline: College Honors Program.
52

Eurythermalism of a deep-sea symbiosis system from an enzymological aspect

Lee, Charles Kai-Wu January 2007 (has links)
The recently proposed and experimentally validated Equilibrium Model provides the most detailed description of temperature's effect on enzyme catalytic activity to date. By introducing an equilibrium between Eact, the active form of enzyme, and Einact, a reversibly inactivated form of enzyme, the Equilibrium Model explains apparent enzyme activity loss at high temperatures that cannot be accounted for by irreversible thermal denaturation. The Equilibrium Model describes enzyme behavior in the presence of substrates and under assay conditions; thus its associated parameters, deltaHeq and Teq, may have physiological significance. The Equilibrium Model parameters have been determined for twenty-one enzymes of diverse origins. The results demonstrated the wide applicability of the Equilibrium Model to enzymes of different types and temperature affinity. The study has also established deltaHeq as the first quantitative measure of enzyme eurythermalism and demonstrated the relationship between Teq and optimal growth temperature of organisms. The Equilibrium Model is therefore a useful tool for studying enzyme temperature adaptation and its role in adaptations to thermophily and eurythermalism. Moreover, it potentially enables a description of the originating environment from the properties of the enzymes. The Equilibrium Model has been employed to characterize enzymes isolated from bacterial episymbionts of Alvinella pompejana. A. pompejana inhabits one of the most extreme environments known to science and has been proposed as an extremely eurythermal organism. A metagenomic study of the A. pompejana episymbionts has unveiled new information related to the adaptive and metabolic properties of the bacterial consortium; the availability of metagenomic sequences has also enabled targeted retrieval and heterologous expression of A. pompejana episymbiont genes. By inspecting enzymes derived from the unique episymbiotic microbial consortium intimately associated with A. pompejana, the study has shed light on temperature adaptations in this unique symbiotic relationship. The findings suggested that eurythermal enzymes are one of the mechanisms used by the microbial consortium to achieve its adaptations. By combining metagenomic and enzymological studies, the research described in this thesis has lead to insights on the eurythermalism of a complex microbial system from an enzymological aspect. The findings have enhanced our knowledge on how life adapts to extreme environments, and the validation of the Equilibrium Model as a tool for studying enzyme temperature adaptation paves the way for future studies.
53

Structural Studies of Prokaryotic and Eukaryotic Oligoribonucleases

Nelersa, Claudiu M. 13 May 2009 (has links)
RNA metabolism includes all the processes required for RNA synthesis, maturation, and degradation in living cells. Ribonucleases (RNases) are involved in RNA maturation and degradation, two essential processes in gene expression and regulation in both prokaryotes and eukaryotes. Oligoribonuclease (Orn) has an important role in eliminating small oligonucleotides (nano-RNA), the last step in mRNA degradation. In E. coli, Orn is the only essential exoribonuclease. The enzyme has been shown to form a stable dimer, both in solution and in the crystalline form. Analysis of the three-dimensional structure of Orn allowed us to hypothesize that dimerization is essential for enzyme catalysis. In order to test the hypothesis, I analyzed a number of deletion and point mutants of Orn and determined that tryptophan 143 is essential for dimerization. A W143A mutant is unable to dimerize and has very little activity, similar to that of an active site mutant (D162A). The atomic structure of the W143A mutant, solved at a resolution of 1.9 Å, showed that although the overall three-dimensional fold is similar to that of the wild-type protein, minor differences exist that could account for the monomeric behavior in solution. A flexible Arg174 is repositioned into the cavity created by the missing Trp143. In this new orientation Arg174 protrudes into a hydrophobic pocket in the dimerization interface and is proposed to produce sufficient unfavorable interactions to keep the monomers apart in solution. All these data suggest that dimerization of Orn is essential for its activity. The human homolog of Orn, also known as small fragment nuclease (Sfn), has been shown to degrade short single-stranded RNA, the last step in mRNA decay. In order to determine the mechanism of action of Sfn and its role in the cell, we solved the crystal structure of a truncated form of Sfn at a resolution of 2.6 Å. This mutant form of Sfn lacks the C-terminal 21 amino acids (Sfn-∆C21) yet is as efficient as full length Sfn on model substrates. Interestingly, Sfn is not as active as E. coli Orn in in vitro assays. Analysis of the atomic structure revealed that the active site cleft in Sfn is narrower than the corresponding active site in E. coli. We propose a model for how this narrower cleft may explain the lower in vitro activity. Bacillus subtilis does not have an Orn homolog and until recently, the enzyme responsible for nano-RNA degradation in this organism was unknown. YtqI (also termed nrnA or nanoRNase), a protein unrelated to E. coli Orn, was recently shown to be responsible for the digestion of oligonucleotides in B. subtilis. In order to better understand the mechanism of action of YtqI, I solved its crystal structure at a resolution of 2.0 Å. The nuclease has a RecJ-like fold with two globular domains connected via a flexible linker that forms a central groove. On one side of the groove, the larger N-terminal domain harbors the putative active site, while on the opposite side, the C-terminal domain includes a putative RNA binding domain. The structure of YtqI provides insights into how this enzyme binds and digests oligoribonucleotides. The studies described here provide a better understanding of the mechanism of action for several exoribonucleases that act on nano-RNA oligonucleotides - Oligoribonuclease from E. coli, its close homolog in humans (Small fragment nuclease), as well as a functional homolog in Bacillus (YtqI). This work is relevant to understanding RNA metabolism, which is an essential process for survival of both eukaryotic and prokaryotic organisms.
54

Allosteric regulation of glycerol kinase: fluorescence and kinetics studies

Yu, Peng 17 February 2005 (has links)
Glycerol kinase (GK) from Escherichia coli is allosterically controlled by fructose 1,6-bisphosphate (FBP) and the glucose-specific phosphocarrier protein IIAGlc of the phosphotransferase system. These controls allow glucose to regulate glycerol utilization. Fluorescence spectroscopic and enzyme kinetic methods are applied to investigate these allosteric controls in this study. The linkage between FBP binding and GK tetramer assembly is solved by observation of homo-fluorescence energy transfer of the fluorophore Oregon Green (OG) attached specifically to an engineered surface cysteine in GK. FBP binds to tetramer GK with an affinity 4000-fold higher than to dimeric GK. A region named the coupling locus that plays essential roles in the allosteric signal transmission from the IIAGlc binding site to the active site was identified in GK. The relationship between the coupling locus sequence in Escherichia coli or Haemophilus influenzae GK variants and the local flexibility of the IIAGlc binding site is established by fluorescence anisotropy determinations of the OG attached to the engineered surface cysteine in each variant. The local flexibility of the IIAGlc binding site is influenced by the coupling locus sequence, and in turn affects the binding affinity for IIAGlc. Furthermore, the local dynamics of each residue in the IIAGlc binding site of GK is studied systematically by the fluorescence anisotropy measurements of OG individually attached to each position of the IIAGlc binding site. The fluorescence steady-state anisotropy measurement provides a valid estimation of the local flexibility and correlates well with the crystallographic B-factors. Steady-state kinetics of FBP inhibition shows that the data are best described by a model in which the partial inhibition and FBP binding stoichiometry are taken into account. Kinetic viscosity effects show that the product-release step is not the purely rate-limiting step in the GK-catalyzed reaction. Viscosity effects on FBP inhibition are also discussed.
55

Understanding Weak Binding for Phospho(enol)pyruvate to the Allosteric Site of Phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus

Ferguson, Scarlett Blair 2011 August 1900 (has links)
Phosphofructokinase (PFK) from the lactic acid bacterium Lactobacillus delbrueckii subspecies bulgaricus (LbPFK) is a non-allosteric PFK with weak binding affinity for both the allosteric ligands phospho(enol)pyruvate (PEP) and magnesium adenosine diphosphate (MgADP). PEP and MgADP bind to the same allosteric binding site but exhibit opposite effects, PEP acting as an inhibitor and MgADP an activator. In 2005, Parichatttanakul, et al. solved the first crystal structure of LbPFK to 1.87 A resolution and allowed for a structural comparison of LbPFK to the allosteric forms of PFK from E. coli (EcPFK) and Bacillus stearothermophilus (BsPFK). Two additional structures of LbPFK have been determined with the first having phosphates bound at the four active sites and four allosteric sites solved to 2.20 A resolution. The second structure solved to 1.83 A resolution contains phosphates at all eight sites with the addition of the substrate fructose-6-phosphate (F6P) in the active sites. These structures are similar to the published sulfate-bound LbPFK structure. Overall, the secondary, tertiary and quaternary structure is conserved with the exception of the residues in the allosteric site. E55, H59, S211, D214, H215 and G216, as well as the long cassettes of residues 52-61 (PFKs1) and 206-218 (PFKs2) were mutated to the corresponding residue/residues in Thermus thermophilus PFK (TtPFK). PFKs1 and PFKs1 were also combined to form PFKs1s2. The single mutations along with PFKs1 and PFKs2 showed no enhancement in PEP binding, but PFKs1s2 enhanced PEP binding 10-fold with no change in MgADP binding compared to LbPFK. D12, located along the active site interface 15 A away from the allosteric site, was mutated to an alanine and exhibited enhanced binding 9-fold for both PEP and MgADP to the allosteric binding site. A crystal structure of D12A was solved to 2.30 A resolution with sulfate bound to all eight binding sites, and showed no major changes in secondary, tertiary or quaternary structure when compared to the sulfate-bound wild-type LbPFK structure. Combining D12A with PFKs1s2 (PFKs1s2/D12A) further enhanced PEP binding with a 21-fold tighter binding compared to LbPFK with MgADP binding being similar to D12A. PEP inhibition was also quantitated in PFKs1s2/D12A with a Q_ay = 0.007 plus/minus 0.0008. Coupling between PEP and F6P in PFKs1s2D12A is 2-fold stronger than the coupling measured in EcPFK and 7-fold stronger than the coupling measured in BsPFK. The coupling measured in PFKs1s2D12A is the first measured in any of the LbPFK variants.
56

Design, synthesis, and evaluation of novel irreversible inhibitors for caspases

Ekici, Ozlem Dogan 01 December 2003 (has links)
No description available.
57

Allosteric regulation of glycerol kinase: fluorescence and kinetics studies

Yu, Peng 17 February 2005 (has links)
Glycerol kinase (GK) from Escherichia coli is allosterically controlled by fructose 1,6-bisphosphate (FBP) and the glucose-specific phosphocarrier protein IIAGlc of the phosphotransferase system. These controls allow glucose to regulate glycerol utilization. Fluorescence spectroscopic and enzyme kinetic methods are applied to investigate these allosteric controls in this study. The linkage between FBP binding and GK tetramer assembly is solved by observation of homo-fluorescence energy transfer of the fluorophore Oregon Green (OG) attached specifically to an engineered surface cysteine in GK. FBP binds to tetramer GK with an affinity 4000-fold higher than to dimeric GK. A region named the coupling locus that plays essential roles in the allosteric signal transmission from the IIAGlc binding site to the active site was identified in GK. The relationship between the coupling locus sequence in Escherichia coli or Haemophilus influenzae GK variants and the local flexibility of the IIAGlc binding site is established by fluorescence anisotropy determinations of the OG attached to the engineered surface cysteine in each variant. The local flexibility of the IIAGlc binding site is influenced by the coupling locus sequence, and in turn affects the binding affinity for IIAGlc. Furthermore, the local dynamics of each residue in the IIAGlc binding site of GK is studied systematically by the fluorescence anisotropy measurements of OG individually attached to each position of the IIAGlc binding site. The fluorescence steady-state anisotropy measurement provides a valid estimation of the local flexibility and correlates well with the crystallographic B-factors. Steady-state kinetics of FBP inhibition shows that the data are best described by a model in which the partial inhibition and FBP binding stoichiometry are taken into account. Kinetic viscosity effects show that the product-release step is not the purely rate-limiting step in the GK-catalyzed reaction. Viscosity effects on FBP inhibition are also discussed.
58

Dye decolourization by immobilized laccase and impact of auxiliary chemicals on dye decolourization

Champagne, Paul-Philippe 16 June 2009 (has links)
Textile dyes are molecules designed to impart a permanent colour to textile fabrics. They pose an environmental problem because they are toxic and they decrease the aesthetic value of rivers and lakes. Current technologies for dye removal cannot remove all classes of dyes and two or more technologies are usually combined to achieve statisfactory decolourization efficiencies. Lignin-degrading enzymes like laccases are potential technologies for dye decolourization and decolourization with immobilized laccase has been intensively investigated. The majority of those studies however have focused on dye disappearance and several reported that significant dye adsorption had occured during the dye removal, making the role of the enzyme unclear. Moreover, textile wastewaters contain auxiliary chemicals that can impact enzymatic dye decolourization and very few studies have evaluated the impact of those substances on laccase. This research evaluated the feasibility of treating dye-contaminated textile wastewaters with an immobilized laccase system. The first sub-objective was to examined the decolourization of Reactive blue 19 (an anthraquinone dye) by Trametes versicolor laccase immobilized on controlled porosity carrier (CPC) silica beads and the second was to analyze the kinetic effects of a non-ionic surfactant Merpol, sodium sulfate, and sodium chloride on laccase decolourization of Reactive blue 19. Decolourization of Reactive blue 19 by immobilized laccase was mainly enzymatic although dye some adsorption occurred. Decolourization led to less toxic by-products from azo and indigoid dyes whereas increased toxicity was observed for anthraquinone dyes. The feasibility of immobilizing laccase on poly(methyl methacrylate) (PMMA) through its sugar residues with a simple procedure was demonstrated and the mass of enzyme immobilized compared well with other commercial acrylic supports. The decolorization of Reactive blue 19 by laccase was inhibited by the non-ionic surfactant, Merpol by substrate depletion. A model describing this inhibition was developed and was validated by a saturated equilibrium binding experiment. While sodium sulfate (ionic strength) had no effect on either ABTS oxidation or dye decolourization, sodium chloride inhibited laccase during dye decolourization and the type and nature of the inhibition depended on the substrate. With ABTS, the inhibition was hyperbolic non-competitive whereas it was parabolic mixed with Reactive blue 19. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-06-16 16:58:47.753
59

Purification and characterization of s-adenosylmethionine synthetase from candida albicans

Jones, Ward M. January 1989 (has links)
S-Adenosylmethionine (SAM) synthetases isolated from both the yeast and hyphal-phase of the dimorphic fungus, C. albicans, were partially purified using DEAE cellulose ion-exchange column chromatography. Further characterization was accomplished using enzyme kinetics and specific enzyme effectors. SAM synthetase is the enzyme responsible for synthesis of SAM which is the major methyl group donor in the methylation of macromolecules. Kinetic studies on column samples, from both phases, were performed. The yeast-phase enzyme had apparent Km ranges for L-methionine and ATP of 1.06-1.42mM and 1.11-1.69mM, respectively. The hyphal-phase enzyme had apparent Km ranges for L-methionine and ATP of 1.34-2.66mM and 3.29-6.28mM, respectively. Effector studies (in vitro) indicate that 10% (v/v) dimethyl sulfoxide (DMSO) and 5mM cycloleucine inhibit SAM Synthetase from both phases, 24% and 46%, respectively. The methionine analogues DLmethionine sulfone, DL-methionine-DL-sulfoxide and L-methioninesulfoximine and sinefungin, an analog of SAM, had no effect on SAM synthetase activity. Although the data is inconclusive with respect to the existence of isozymes, the observed Km's of the yeast and hyphal-phases are different suggesting that isozymes may exist. Additionally, the yeast-phase DEAE column profile has a shoulder prior to the main peak of activity indicating that more then one form of the enzyme may be present. / Department of Biology
60

Structure and function studies of mammalian adenosine kinase /

Maj, Mary Christine. Gupta, Radhey S. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Advisor: R.S. Gupta. Includes bibliographical references. Also available via World Wide Web.

Page generated in 0.0755 seconds