81 |
Towards a kinetic model of the Entner-Doudoroff pathway in Zymomonas mobilisVan Staden, Charles Theo 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Metabolic networks of cellular systems are complex, in that there are numerous components with
multiple non-linear interactions. To understand how these networks work they are often split into
manageable pieces and studied individually. However, an individual part is unable to account for
the complex properties of systems. In order to study these interactions the eld of systems biology
has developed. Systems biology makes use of computers to construct models as a method to
describe aspects of living systems. Using cellular pathways, kinetic models of metabolic pathways
can be constructed and used as a tool to study the biological systems and provide a quantitative
description. This thesis describes the quantitative analysis of a bacterium using a systems biology
approach.
Zymomonas mobilis is a rod shaped, Gram-negative, non-mobile facultative anaerobe and has
one of the fastest observed fermentations, yet least energy e cient extractions found in nature.
Furthermore it is the only known micro-organism to use the Entner-Doudoro (2-keto-3-deoxy-6-
phosphogluconate) pathway anaerobically. The low energy yield of fermentation in Z. mobilis is
a result of the usage of the Entner-Doudoro glycolytic pathway, which has half the energy yield
per mol substrate compared to the well known Embden-Meyerhof-Parnas glycolytic pathway.
The work presented in this thesis forms part of a larger project to compare glycolytic regulation
in di erent micro-organisms Z. mobilis, Escherichia coli, Saccharomyces cerevisiae and Lactococcus
lactis. These organisms were chosen based on their usage of di erent glycolytic mechanisms.
Kinetic models are suitable tools to draw a comparison between these organisms. The emphasis
here is on the construction of a kinetic model of the Entner-Doudoroff glycolytic pathway as it
occurs in Z. mobilis. The aim of this thesis was to characterise as many of the Entner-Doudoro pathway enzymes
as possible, under standard conditions. This was done using enzyme assays, to obtain the kinetic
parameters of each of the enzymes. Microtitre plate assays were used to characterise most of the
enzymes of the Entner-Doudoro pathway. However, not all characterisations could be done using
plate assay methods, as some intermediates were not commercially available to perform coupled
assays. Nuclear magnetic resonance (NMR) spectroscopy was used to characterise these enzymes.
These experimentally obtained parameters were then incorporated in a mathematical framework.
Time simulations on the initial model were unable to reach a steady-state, with a build up of
metabolic intermediates. A secondary model was constructed (using calculated maximal activities)
which allowed us to identify discrepancies in the initial model. This showed that the experimentally
determined maximal activities of three enzymes in lower glycolysis were unrealistically low,
which might be due to protein denaturation by sonication.
A nal model was constructed which incorporated a correction factor for these three enzymes.
The models' predicted output (steady-state concentrations and
ux) was compared to that of either literature or experimentally determined values, as a method to validate the model. The
model output compared well to literature values. The constructed and partially validated kinetic
model was then used as an analytical tool to identify points of control and regulation of glycolysis
in Z. mobilis.
The model presented in this work was also compared to published models. Our model relies
much less on literature obtained values, and uses kinetic parameters experimentally determined
under the same conditions. The parameters of the published models were obtained from the
literature and in many instances, the assay conditions for these parameters were set-up to yield
the maximum activity under non-physiological conditions. Furthermore, the number of excluded or
assumed parameters is much less in our model. However, introduction of a milder, more predictable
extraction technique for preparing cell lysates, should be considered for future work, to obtain the
parameters that was not determined during this study. The published models do include reactions
not included in our model (e.g ATP metabolism), which should be considered for inclusion, as we
strive to construct a detailed kinetic model of glycolysis in Z. mobilis in the future. / AFRIKAANSE OPSOMMING: Sellul^ere metaboliese netwerke is komplekse stelsels, omdat hulle bestaan uit talle komponente met
verskeie nie-lineêre interaksies. Om die funksionering van hierdie netwerke te verstaan, word hulle
dikwels in hanteerbare stukke verdeel en individueel bestudeer. 'n Enkele komponent is egter nie in
staat om die komplekse eienskappe van sulke stelsels te verklaar nie. Die veld van sisteembiologie
het ontwikkel met die doel om sulke stelsels te bestudeer. Sisteembiologie maak gebruik van
rekenaarmodelle as 'n metode om aspekte van lewende sisteme te beskryf. Kinetiese modelle van
metaboliese paaie word gebou en gebruik as gereedskap om die biologiese stelsels te bestudeer en
'n kwantitatiewe beskrywing te bekom. Hierdie tesis beskryf die kwantitatiewe ontleding van 'n
bakterie deur middel van 'n sisteembiologiese benadering.
Zymomonas Mobilis is 'n staafvormige, Gram-negatiewe, nie-mobiele fakultatiewe ana erobe,
en het een van die vinnigste waargenome fermentasies, maar met die minste energie-doeltre ende
ekstraksie wat in die natuur aangetref word. Verder is dit die enigste bekende mikro-organisme wat
die Entner-Doudoro (2-keto-3-dioksi-6-fosfoglukonaat) pad ana erobies gebruik. Die lae-energieopbrengs
van fermentasie in Z. mobilis is 'n gevolg van die gebruik van die Entner-Doudoro
metaboliese pad, wat die helfte van die energie-opbrengs per mol substraat lewer, in vergelyking
met die bekende Embden-Meyerhof-Parnas pad.
Die werk wat in hierdie tesis aangebied word, vorm deel van 'n groter projek om glikolitiese
regulering in verskillende mikro-organismes te vergelyk, naamlik Z. mobilis, Escherichia coli, Sac-
charomyces en Lactococcus lactis. Hierdie organismes is gekies op grond van hul gebruik van
verskillende glikolitiese meganismes. Kinetiese modellering is 'n handige metode om 'n vergelyking
tussen hierdie organismes te trek. Hierdie werk fokus op die bou van 'n kinetiese model van
die Entner-Doudoro glikolitiese metaboliese pad soos dit in Z. mobilis voorkom. Die doel van hierdie tesis was om so veel moontlik van die Entner-Doudoro ensieme onder
standaard-toestande te karakteriseer. Die kinetiese parameters van elk van die ensieme is met
behulp van ensimatiese essai's bepaal. Vir die meeste essai's is 96-put mikrotiterplate gebruik,
maar nie al die karakteriserings kon met behulp van hierdie metode gedoen word nie, omdat
sommige intermediate nie kommersieel beskikbaar was om gekoppelde essai's mee uit te voer nie.
Kernmagnetiese resonansie (KMR) spektroskopie is gebruik om hierdie ensieme te karakteriseer.
Die eksperimenteel bepaalde parameters is opgeneem in 'n wiskundige raamwerk. Tydsimulasies
op die aanvanklike model was nie in staat om 'n bestendige toestand te bereik nie, omdat
metaboliete opgebou het. 'n Sekond^ere model is gebou (met behulp van berekende maksimale
aktiwiteite) wat ons toegelaat om teenstrydighede in die aanvanklike model te identi seer. Dit het
getoon dat die eksperimenteel bepaalde maksimale aktiwiteite van drie ensieme in die laer gedeelte
van glikolise te laag was, waarskynlik as gevolg van prote en denaturering tydens die ultrasoniese
disintegrasieproses. 'n Finale model is gebou waarin 'n korreksiefaktor vir hierdie drie ensieme opgeneem is. Die
modelle se voorspelde uitset (bestendige toestand konsentrasies en
uksie) is vergelyk met waardes
uit die literatuur of wat ons self bepaal het, as 'n metode om die model te valideer. Die model uitset
was in goeie ooreenstemming met hierdie waardes. Die gedeeltelik gevalideerde kinetiese model is
voorts gebruik as 'n analitiese instrument om beheer en regulering van glikolise in Z. mobilis te
ondersoek.
Die model wat in hierdie werk ontwikkel is, is ook vergelyk met die vorige gepubliseerde modelle.
Ons model berus baie minder op waardes uit die wetenskaplike literatuur, en maak gebruik
van parameters wat eksperimenteel bepaal is, onder identiese toestande. Die parameters van die
gepubliseerde modelle is meesal verkry uit die literatuur, en in baie gevalle was die eksperimentele
kondisies vir hierdie analises opgestel om die maksimale aktiwiteit te lewer onder nie- siologiese
toestande. Verder bevat ons model minder parameters wat of uitgesluit is of wie se waardes aangeneem
moes word. In toekomstige werk sal daar egter klem gel^e moet word op 'n minder wisselvallige
ekstraksietegniek vir die verkryging van selekstrakte, om sodoende parameters te identi seer wat
nie in hierdie werk bepaal kon word nie.
Die gepubliseerde modelle sluit ook reaksies in wat nie ingesluit is in ons model nie (bv. ATP
metabolisme). Hierdie sou in ag geneem moet word vir insluiting in 'n toekomstige uitgebreide
model, om daarna te streef om 'n gedetailleerde kinetiese model van glikolise in Z. mobilis te bou.
|
82 |
Understanding glycolysis in Escherichia coli : a systems approach using nuclear magnetic resonance spectroscopyEicher, Johann Josef 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: This dissertation explores the behaviour and regulation of central carbon metabolism in Escherichia
coli K12 W3110 under fermentative microaerobic conditions. To achieve this, an integrative systems
modelling approach was adopted, which is introduced in Chapter 1 along with a review of
metabolism in E. coli. An open-source software suite NMRPy, developed using the Python programming
language, is presented in Chapter 2. NMRPy provides a host functions for basic processing,
analysis and visualisation of Nuclear Magnetic Resonance (NMR) spectroscopy data. In addition
to this, NMRPy offers specialised functions for the deconvolution of arrayed reaction time series,
which proved indispensable to the research presented in this dissertation. NMRPy presents an easy
to use, extensible tool for both routine and advanced use. In Chapter 3, a novel methodology is
presented which was developed for the effective and comprehensive determination of enzyme kinetic
parameters for systems biology using NMR. In contrast to traditional enzyme kinetic assay
methods, this new methodology is less labour-intensive and yields significantly more information
per experiment. By fitting kinetic equations to real time NMR data, dynamic changes in substrates,
products and allosteric modifiers are quantified and allowed to inform the parameter fitting
procedure. These data contain information on cooperative substrate binding, reversibility, product
inhibition and allosteric effects. The proposed methodology is applied to the study of the first two
enzymes of the glycolytic pathway. In Chapter 4, the construction, parameterisation and validation
of a number of kinetic models of glycolysis in E. coli under microaerobic conditions is detailed.
To model the lower half of glycolysis, a similar technique was adopted as in Chapter 3, in which
models representing the reactions from triosephosphate isomerase to pyruvate kinase were parameterised
by fitting them to a collection of 31P NMR reaction time series. This approach extends
the methodology to enzyme sub-networks, yielding data that encompass the full complexity of the
network regulatory interactions. The verified kinetic models were subjected to scrutiny, the results
of which are presented in Chapter 5. The value of the modelling approach is demonstrated by the
ease with which cumbersome in vivo experiments can be performed in silico. A structural analysis
of the model topology was conducted, elucidating the elementary flux modes of fermentative glycolysis
in E. coli, and identifying a futile cycle around PEP carboxylase and PEP carboxykinase. Model steady-state behaviour and control properties were explored in silico under various degrees
of ATP demand and oxygen availability and a number of hypotheses are presented, explaining
the regulation of free energy in E. coli, and the metabolic responses of E. coli to changing redox
demands. Amongst other things, the results demonstrated that the glucose importing phosphoenolpyruvate:
phosphotransferase pathway controlled glycolytic flux, and that under microaerobic
conditions E. coli is able to regulate redox balance not only by balancing flux between acetate and
ethanol, but also by altering the balance of flux between acetate and lactate at the pyruvate formate
lyase/lactate dehydrogenase branch point. This study demonstrates the value of an integrated
computational and experimental systems approach to exploring biological phenomena. / AFRIKAANSE OPSOMMING: In hierdie proefskrif word die gedrag en regulering van die sentrale koolstofmetabolisme in Escherichia
coli K12 W3110 onder fermenterende mikro-a¨erobiese toestande ondersoek. Dit is moontlik
gemaak deur ’n ge¨ıntegreerde stelsel-modelleringsbenadering, wat in Hoofstuk 1 bekendgestel
word. D´ıe hoofstuk verskaf ook ’n oorsig van die metabolisme in E. coli. ’n Oopbron-kodepakket
NMRPy, wat in die programmeringstaal Python ontwikkel is, word in Hoofstuk 2 beskryf. NMRPy
verskaf ’n aantal funksies vir die basiese verwerking, analise en visualisering van Kern-Magnetiese
Resonansie (KMR) spektroskopiese data, sowel as gespesialiseerde funksies vir die dekonvolusie van
opeenvolgende reaksie-tydreekse. Hierdie funksionaliteit was onontbeerlik vir die verdere navorsing
in hierdie proefskrif. Hoofstuk 3 beskryf die ontwikkeling van ’n nuwe metodiek vir die omvangryke
bepaling van ensiem-kinetiese parameters vir sisteembiologie, deur van KMR gebruik te maak.
In teenstelling tot tradisionele ensiem-kinetiese essai-metodes, is hierdie nuwe metodologie minder
arbeidsintensief en lewer dit beduidend meer inligting per eksperiment. Deur die kinetiese vergelykings
op tydsafhanklike KMR data te pas, word dinamiese veranderinge in substrate, produkte en
allosteriese effektors gekwantifiseer en hierdie inligting gebruik in die passingsprosedure. Die data
bevat inligting oor ko¨operatiewe substraatbinding, omkeerbaarheid, produkinhibisie en allosteriese
effekte. Die voorgestelde metodologie word toegepas op die karakterisering van die eerste twee
glikolitiese ensieme. In Hoofstuk 4 word die konstruksie, parameterisering en validering van ’n
aantal kinetiese modelle van glikolise in E. coli onder mikro-a¨erobiese toestande uiteengesit. Die
waarde van die modelleringsbenadering lˆe in die gemak waarmee omslagtige in vivo eksperimente
in silico uitgevoer kan word. Om die onderste helfte van die glikolitiese pad te modelleer word ’n
soortgelyke tegniek as in Hoofstuk 3 gebruik. Modelle van die reaksies vanaf triosefosfaat-isomerase
tot by pirovaat-kinase is geparameteriseer deur dit op ’n versameling 31P KMR-tydreekse te pas.
Hierdie benadering brei bostaande metodologie uit tot ensiem-subnetwerke en genereer data wat
die volle kompleksiteit van regulerende interaksies in die netwerk insluit. Die geverifieerde modelle
word in Hoofstuk 5 noukeurig ondersoek. ’n Strukturele analise van die modeltopologie word onderneem
om die elementˆere fluksie-modes van fermentatiewe glikolise in E. coli te verklaar, sowel
as om ’n futiele siklus rondom fosfo¨enolpirovaat karboksilase en fosfo¨enolpirovaat karboksikinase
te identifiseer. Die bestendige-toestandsgedrag en kontrole-eienskappe word in silico ondersoek
onder toestande van verskeie ATP beladings en suurstofbeskikbaarheid. ’n Aantal hipoteses word voorgelˆe, wat die regulering van vry energie in E. coli, sowel as die metaboliese reaksies van E. coli
onder veranderende redoks-vereistes kan verklaar. Onder andere dui die resultate daarop dat die
fosfo¨enolpirovaat:fosfotransferase sisteem (wat verantwoordelik is vir glukose-opname in die sel) die
glikolitiese fluksie beheer en dat E. coli onder mikro-a¨erobiese toestande die redoksbalans nie net
tussen asetaat en etanol kan reguleer nie, maar ook die deur wysiging van die fluksie-balans tussen
asetaat en laktaat rondom die pirovaat-formiaat-liase/laktaatdehidrogenase vertakkingspunt. Hierdie
studie toon die waarde van ’n ge¨ıntegreerde rekenaarmatige en eksperimentele sisteembenadering
om biologiese verskynsels te ondersoek.
|
83 |
Intramolecular and intracomplex electron transfer in water soluble redox proteins.Bhattacharyya, Anjan Kumar. January 1988 (has links)
Electron transfer to and between the redox centers of milk xanthine oxidase was investigated by laser flash-photolysis. Evidence is presented for slow equilibration of electrons (k < 38 s⁻¹) between the various redox centers of the enzyme. The enzyme-bound flavin and the heme moieties of the flavoprotein and cytochrome subunits of p-cresol methyl hydroxylase from Pseudomonas putida are both reduced rapidly in a second order manner by 5-dRF generated by the laser flash, followed by slower first order intramolecular electron transfer (k = 220 s⁻¹) from the protein-bound neutral flavin radical to the oxidized cytochrome. Complex formation between spinach ferredoxin:NADP⁺-reductase (FNRₒᵪ), spinach ferredoxin (Fdₒᵪ), rubredoxin (Rdₒᵪ) from Clostridium pasteurianum, two homologous HIPIP's from Ectothiorhodospira halophila (iso-1 and iso-2) and two homologous cytochromes (cytochromes-c₂ from Paracoccus denitrificans and Rhodospirrilum rubrum) have been investigated. Evidence is presented supporting the formation of 1:1 complexes that are stabilized by attractive electrostatic interactions at low ionic strength. Kinetic studies of the above-mentioned complexes provide evidence for extremely rapid to relatively slower intracomplex electron transfer rates (k 7000 s⁻¹ to 4 s⁻¹). In addition the effect of complexation on the degree of accessibility of the various redox centers of the respective complexes to reduction by small reductants such as 5-dRF· and LfH· generated by the laser flash has been evaluated. The effect of both pH and ionic strength on the second order rate of reduction and the intracomplex rates in the respective complexes have also been investigated. The results have been interpreted in terms of redox potential differences, electrostatic and structural features that influence the electron transfer rates in these systems.
|
84 |
Oxidation of 1,2-Diols Using Alcohol Dehydrogenases : From Kinetic Characterization to Directed EvolutionBlikstad, Cecilia January 2013 (has links)
The use of enzymes as catalysts for chemical transformations has emerged as a “greener” alternative to traditional organic synthesis. An issue to solve though, is that enzymes are designed by nature to catalyze reactions in a living cell and therefore, in many cases, do not meet the requirements of a suitable biocatalyst. By mimicking Darwinian evolution these problems can be addressed in vitro by different types of directed evolution strategies. α-Hydroxy aldehydes and α-hydroxy ketones are important building blocks in the synthesis of natural products, fine chemicals and pharmaceuticals. In this thesis, two alcohol dehydrogenases, FucO and ADH-A, have been studied. Their potentials to serve as useful biocatalysts for the production of these classes of molecules have been investigated, and shown to be good. FucO for its strict regiospecificity towards primary alcohols and that it strongly prefers the S-enantiomer of diol substrates. ADH-A for its regiospecificity towards secondary alcohols, its enantioselectivity and that is has the ability to use a wide variety of bulky substrates. The kinetic mechanisms of these enzymes were investigated using pre-steady state kinetics, product inhibition, kinetic isotope effects and solvent viscosity effects, and in both cases, the rate limiting steps were pin-pointed to conformational changes occurring at the enzyme-nucleotide complex state. These characterizations provide an important foundation for further studies on these two enzymes. FucO is specialized for activity with small aliphatic substrates but is virtually inactive with aryl-substituted compounds. By the use of iterative saturation mutagenesis, FucO was re-engineered and several enzyme variants active with S-3-phenylpropane-1,2-diol and phenylacetaldehyde were obtained. It was shown that these variants capability to act on larger substrates are mainly due to an enlargement of the active site cavity. Furthermore, several amino acids which are important for catalysis and specificity were identified. Phe254 interacts with aryl-substituted substrates through π-π stacking and may be essential for activity with these larger substrates. One mutation caused a loss in the interactions made between the enzyme and the nucleotide and thereby enhanced the turnover number for the preferred substrate
|
85 |
Characterization of Lipoxygenases from Cyanothece sp.Newie, Julia 01 January 2016 (has links)
No description available.
|
86 |
Kinetic and mechanistic studies of oxygen sensing Fe(II)/2-oxoglutarate dependent oxygenasesTarhonskaya, Hanna January 2014 (has links)
The Fe(II)/2-oxoglutarate (2OG) dependent oxygenases are a widespread enzyme family, which are characterised by structurally similar active sites and proposed to employ a common reaction mechanism. The work described in this thesis concerned kinetic and biophysical studies on 2OG oxygenases, with a particular focus on the hypoxia-inducible transcription factor (HIF) hydroxylases and mechanistic aspects of their reaction with oxygen. The four human HIF hydroxylases regulate cellular levels and transcriptional activity of HIF by catalysing its post-translational hydroxylation in response to changes in oxygen availability. The three prolyl hydroxylase domain enzymes (PHDs1-3) and factor inhibiting HIF (FIH) are proposed to act as cellular oxygen sensors and provide a direct link between oxygen availability and the hypoxic response. Previous transient kinetic studies have shown that PHD2 (the most important human PHD isoform) reacts slowly with oxygen, a factor proposed to be related to its oxygen-sensing role. The molecular mechanisms for the slow PHD2 reaction with oxygen were investigated using a range of kinetic and biophysical techniques to probe the effects of key active site substitutions. The studies reveal that a conservative substitution to an Fe(II)/H<sub>2</sub>O binding residue results in 5-fold faster reaction with oxygen, suggesting a role for H<sub>2</sub>O release from the active site in limiting the ability of oxygen to react with PHD2. This thesis also describes the first transient kinetic studies of FIH. The obtained results show that the rate of the FIH reaction with oxygen was significantly faster than for PHD2. Further, FIH catalyses hydroxylation not only of HIF-α, but also of proteins containing ankyrin repeat domains (ARD). The rate of the FIH reaction with oxygen was shown to be substrate dependent; faster oxygen activation of the reaction in the presence of ARD compared with HIF substrates was observed. Mechanistic studies were performed to investigate a report that PHD2 is involved in the enzymatic oxidation of an oncometabolite (R)-2-hydroxyglutarate (2HG) to give 2OG, in what would be an unprecedented reaction for a 2OG oxygenase. This work found that 2HG does not substitute for 2OG in PHD2 catalysis. Instead, the non-enzymatic transformation of 2HG to 2OG was observed, which could potentially contribute to the reported 2HG-dependent PHD activation in vivo. The biophysical and transient kinetic techniques used for studying the HIF hydroxylases were also applied to study the mechanism of deacetoxycephalosporin C synthase (DAOCS, the enzyme catalysing penicillin N ring expansion). Previously, it has been suggested that the DAOCS mechanism differs from the consensus 2OG oxygenase mechanism. The results described in this thesis provide strong evidence that DAOCS employs the consensus ordered mechanism characteristic of 2OG oxygenases, supporting the proposal that the consensus mechanism is a common feature of the 2OG oxygenase family. Overall, the work described in this thesis is supportive of the proposal that most, if not all, 2OG oxygenases employ a common mechanism. However, the differences in the kinetics of their reaction with oxygen, presented throughout the thesis, suggest that different 2OG oxygenases have different rate-limiting steps. Thus, the kinetics of specific oxygenases may be adapted to their biological function, in particular that of PHD2 as the key cellular O<sub>2</sub> sensor.
|
87 |
Modification électrochimique de surface pour la mesure des interactions ADN/Protéines (HsRad51 - Transposase) / Electrochemical surface modification for the measurements of the DNA/Proteins interactions (HsRad51 - Transposase)Esnault, Charles 26 June 2012 (has links)
Depuis l'apparition du terme "biosensor" à travers un article de Lyons et Clark en 1962, les biocapteurs ont connu un véritable essor tant au niveau académique qu'industriel. Le principal objectif de ce travail de thèse était de créer une surface permettant l'immobilisation spécifique par liaison covalente de simple ou double brin d'ADN puis d'étudier les interactions pouvant exister entre une protéine donnée et l'ADN. Pour préparer la surface à cette immobilisation, nous avons opéré une réduction électrochimique de sel d'aryldiazoniums. Ce type de modification nous a permis de fixer de manière covalente sur la surface conductrice des fonctions de type Ar-SO2Cl. Par l'utilisation de la QCM et de l'AFM, nous avons pu par la suite détailler les mécanismes de fonctionnement de protéines (HsRad51 et Transposase) en interaction avec l'ADN simple ou double brin fixé, que ce soit d'un point de vue cinétique ou bien structural. / Since the emergence of the term "biosensor" through an article of Clark and Lyons in 1962, such devices have experienced a tremendous activity both in the academic and industries. The main objective of this thesis work was to create a surface allowing the specific immobilization of single or double DNA strand by covalent bonding and then study the interactions that may exist between a given protein and DNA. To functionalize the surface, we firstly investigated the electrochemical reduction of aryldiazoniums salt. This kind of methodology has allowed us to covalently graft Ar-SO2Cl functions over the conductive surface which can further react with DNA to immobilize it. By using the QCM and AFM methodologies, we are able to kinetically or structurally detail the intimate mechanisms of interactions between two proteins (HsRad51 and Transposase) and single or double strand DNAs.
|
88 |
Charakterisace nových inhibitorů neuraminidasy z chřipkového viru / Characterization of novel inhibitors of neuraminidase from influenza virusDurčák, Jindřich January 2015 (has links)
No description available.
|
89 |
L-DOPA extradiol dioxigenase de amanita muscaria: revisão da sequência codificadora, expressão heteróloga, caracterização funcional e contextualização filogenética / Amanita muscaria L-DOPA extradiol dioxygenase: coding sequence review, heterologous expression, functional characterization, and phylogenetic contextSoares, Douglas Moraes Mendel 07 March 2019 (has links)
Extradiol dioxigenases são enzimas que catalisam a clivagem oxidativa de ligações C-C entre grupos hidroxila fenólicos adjacentes utilizando catecóis como substratos. Esta classe de enzimas é bem caracterizada em bactérias, onde catalisam a degradação de compostos aromáticos. Na maioria das plantas Caryophyllales, como a beterraba, primavera e a maravilha, L-3,4-diidroxifenilalanina (L-DOPA) extradiol dioxigenases (DODAs) catalisam a clivagem oxidativa de L-DOPA na posição 4,5 gerando o ácido betalâmico, aldeído precursor das betalaínas, uma classe de pigmentos naturais que substitui as antocianinas na pigmentação dessas espécies. Alguns fungos basidiomicetos também produzem betalaínas, como o agário-das-moscas (Amanita muscaria). Nesse organismo, DODA é capaz de catalisar uma clivagem adicional na posição 2,3 da L-DOPA, formando muscaflavina, um isômero do ácido betalâmico que dá origem a uma outra classe de pigmentos naturais: as higroaurinas. Desde a caracterização do gene dodA, o qual codifica para a DODA de A. muscaria (AMAMU), não existem relatos na literatura que explorem a promiscuidade catalítica desta enzima, sua relação com outras linhagens de DODAs e a síntese quimioenzimática de betalaínas a partir desta enzima. Dessa forma, buscamos contextualizar as relações filogenéticas e funcionais entre AMAMU e diferentes linhagens de DODAs, bem como estabelecer um método que viabilize a clonagem, expressão heteróloga e caracterização funcional destaenzima. As análises filogenéticas revelaram que AMAMU possui uma evolução convergente com DODAs de plantas e bactérias e que, apesar de AMAMU ser funcionalmente homóloga à DODA da bactéria Escherichia coli, esta última apresenta homologia com DODAs de plantas. Logo, não há uma relação direta entre a sequência primária de DODAs e sua função. Nós também demonstramos que não há uma relação entre a expressão de transcritos de BvDODA1, e de seu parálogo BvDODA2, e a diferença de pigmentação entre variedades de beterrabas amarelas e vermelhas. A clonagem da sequência codificadora (CDS) publicada para o gene dodA de A. muscaria resultou na retenção do primeiro íntron, o que impedia a sua expressão. Então, uma nova CDS de 558 nucleotídeos foi proposta para este gene, a qual inclui um códon de início da tradução que se mantém na fase de leitura e codifica para uma proteína de 185 resíduos, 43 a menos que AMAMU. A expressão desta CDS resultou na proteína recombinante AmDODA, capaz de catalisar a síntese de ácido betalâmico e muscaflavina a partir de L-DOPA e D-DOPA. AmDODA possui um tamanho aproximado de 22 kDa, com um pH ótimo de atividade de 8,5 e uma constante de Michaelis (KM) de 3,7 ± 0,9 mmol L-1 e de velocidade máxima (Vmax) de 3,3 ± 0,4 µ mol min-1 mg-1. Sua utilização foi demonstrada na síntese quimioenzimática de betalaínas-modelo com potencial aplicação como sondas para microscopia confocal de fluorescência de dois fótons. Neste contexto, esta Tese explora os aspectos moleculares, bioquímicos e biológicos da DODA do fungo A. muscaria e traz importantes contribuições acerca da pigmentação por betalaínas na natureza. / Extradiol dioxigenases are enzymes that catalyze the oxidative cleavage of C-C bonds between adjacent phenolic hydroxyl groups using catechols as substrates. This class of enzymes is well characterized in bacteria, where they catalyze the degradation of aromatic compounds. In most plants of the Order Caryophyllales, such as beet, paperflower and four o\'clock flower, L-3,4-dihydroxyphenylalanine (L-DOPA) extradiol dioxygenases (DODAs) catalyze the oxidative 4,5-cleavage of L-DOPA generating the betalamic acid, an aldehyde precursor of the betalains, a class of natural pigments that replaces anthocyanins in the pigmentation of these species. Some basidiomycete fungi also produce betalains, such as the fly agaric (Amanita muscaria). In this organism, DODA is able to catalyze an additional 2,3-cleavage of L-DOPA, yielding muscaflavine, an isomer of betalamic acid that gives rise to another class of natural pigments: the hygroaurins. Since the characterization of the dodA gene, which encodes the A. muscaria DODA (AMAMU), there are no reports in the literature that explore the catalytic promiscuity of this enzyme, its relation to other DODAs and the chemoenzymatic synthesis of betalains from this enzyme. Thus, we seek to contextualize the phylogenetic and functional relationships between AMAMU and different DODA lineages, as well as to establish a method that enable the cloning, heterologous expression and functional characterization of this enzyme. Phylogenetic analysis revealed that AMAMU has a convergent evolutionwith plant and bacterial DODAs and that although AMAMU is functionally homologous to the DODA of the Escherichia coli bacteria, this latter is homologous to the plant DODAs. Therefore, there is no direct relationship between the primary sequence of DODAs and their function. We have also shown that there is no relationship between the expression of BvDODA1 transcripts, and its BvDODA2 paralogue, and the pigment difference between yellow and red beet varieties. Cloning of the published coding sequence (CDS) for the dodA gene of A. muscaria resulted in the retention of the first intron, which prevented its expression. Then, a new CDS of 558 nucleotides was proposed for this gene, which includes a translation start codon that remains in the open reading frame and encodes for a protein 185 residues long, 43 less than AMAMU. Expression of this CDS resulted in the recombinant AmDODA protein, able to catalyze the synthesis of betalamic acid and muscaflavine from L-DOPA and D-DOPA. AmDODA has an approximate size of 22 kDa, with an optimum activity pH of 8.5 and a Michaelis constant (KM) of 3.7 ± 0.9 mmol L-1 and a maximum velocity (Vmax) of 3.3 ± 0.4 µmol min-1 mg-1. Its use was demonstrated in the chemoenzymatic synthesis of betalains-model with potential application as probes for confocal microscopy of two-photon fluorescence. In this context, this thesis explores the molecular, biochemical and biological aspects of the DODA of the fungus A. muscaria and brings important contributions about the pigmentation by betalains in nature.
|
90 |
Studies towards a catalytic asymmetric isomerization of manganese complexed alkynes to allenes using chiral basesUnknown Date (has links)
The conversion of alkynyl carbonyls to allenyl carbonyls via manganese mediated coordination followed by a base-catalyzed isomerization was carried out using a range of chiral and achiral amine bases. Chiral amidine and chiral DBU derivatives were synthesized to carry out the isomerization enantioselectively. We employed HPLC equipped with a chiral column to determine the enantiomeric excess. We also proved that the mechanism of that the manganese-coordinated alkyne/allene rearrangement reaction involved an intermediate cumenolate. It was also confirmed that amine base with pKa lower than that of DBU (pKa = 13.6) would not carry out the isomerization. Alkoxy base were also used in isomerization and the mechanism was also investigated. / by Chang He. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
Page generated in 0.1098 seconds