• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • Tagged with
  • 13
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Röntgenstrukturanalyse verschiedener humaner Tryptasen, ihre funktionelle Charakterisierung und bifunktionale Inhibition

Marquardt, Ulf. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
2

Model based development of continuous processes for production of chiral glycol ethers by biocatalysis Modellbasierte Entwicklung kontinuierlicher Prozesse zur Herstellung chiraler Glykolether durch Biokatalyse /

Berendsen, Wouter Robert. January 2008 (has links)
Stuttgart, Univ., Diss., 2007.
3

Modellgestützte Entwicklung eines Prozesses für die mikrobielle Hydrolyse von Propionitril zu Ammoniumpropionat

Christian, Hans Jürgen. January 2000 (has links)
Stuttgart, Univ., Diss., 2000.
4

Metabolic egineering of the valine pathway in corynebacterium glutamicum analysis and modelling /

Magnus, Jørgen Barsett. January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007.
5

Immobilisierung von Haloalkan-Dehalogenasen und Prozessentwicklung der enzymatischen Produktion von optisch aktivem 2,3-Dichlor-1-propanol

Samorski, Markus. January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
6

Biosynthese von Vitamin B2 - die Lumazinsynthase Charakterisierung und Anwendung /

Haase, Ilka. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
7

Oktapeptide als neue Organokatalysatoren zur Hydrolyse von Phosphaten und Estern / Octapeptides as new organocatalysts for hydrolysis of phosphates and ester

Dudaczek, Jürgen January 2009 (has links) (PDF)
Ziel der Dissertation „Oktapeptide als neue Organokatalysatoren zur Hydrolyse von Phosphaten und Estern“ war es neue Oktapeptide zu finden, die die Fähigkeit besitzen Phosphate und Ester zu Hydrolysieren. In der Natur ist bei den Katalysereaktionen die Sekundärstruktur von entscheidender Bedeutung. Aus diesem Grunde wurde im Rahmen dieser Arbeit zunächst ein Modellsystem entwickelt, mit dem gezeigt werden konnte, dass es möglich ist mit einfachen Bausteinen wie Diaminobutan und dem in der Gruppe von Schmuck entwickelten Guanidiniocarbonylpyrrol ein Molekül zu entwickeln, welches eine stabile intramolekulare Schleife in polaren Lösungsmitteln ausbildet. Aufgrund der geringen Größe des Moleküls, konnte kein β-Faltblatt gebildet werden. Dennoch konnte mit Hilfe der NMR-Spektroskopie gezeigt werden, dass in dem polaren Lösungsmittel Methanol eine stabile Schleifenbildung mit einer intramolekularen Komplexierung stattfindet. Nach erfolgreicher Synthese des oben beschriebenen Testsystems wurde als nächster Schritt eine kombinatorische Organokatalysatorbibliothek mit 625 Mitgliedern aufgebaut. Die Struktur der Peptide kann man in drei Teile untergliedern. Der erste Teil ist die feste Phase, das Amino-TentaGel, an das nacheinander die einzelnen Aminosäuren gekuppelt wurden. An Stelle der Butylgruppe als Schleifenelement wurde Aib-D-Pro als β-Turn Element eingesetzt. Den dritten Teil bilden die bei der Synthese der Oktapeptide eingesetzten Aminosäuren AA1, AA3, AA6, AA8, die ein β-Faltblatt ausbilden sollten. Die kombinatorische Synthese der Bibliothek erfolgte nach der „Split and Mix“ Methode. Zum Unterscheiden der einzelnen Mitglieder untereinander, wurde die feste Phase zusammen mit einem Radiofrequenzchip in IRORI MikroKans gegeben. Durch die unterschiedlichen Aminosäuren ist die Bibliothek für die Katalyse in polaren Lösungsmitteln wie Wasser konzipiert worden. Als exemplarische Katalysereaktionen wurden dabei zwei Hydrolysereaktionen (Phosphatspaltung und Esterspaltung) ausgesucht. Zunächst wurde für beide Reaktionen ein Screening mit unterschiedlichen Bedingungen durchgeführt. Dabei hat sich gezeigt, dass bei der Phosphatspaltung nur dann die Reaktion katalysiert wurde, wenn das künstliche Argininanalogon, welches in unserer Arbeitsgruppe synthetisiert wurde, vorhanden war. Der beste Katalysator hat die Reaktion 175-mal schneller katalysiert als die unkatalysierte Reaktion. Bei dem Screening der Esterspaltung hat sich herausgestellt, dass die Aminosäure Histidin essentiell für die katalytische Aktivität ist. Der beste Katalysator bei der Esterspaltung hat die Hydrolyse des Esters 345-mal schneller katalysiert als die unkatalysierte Reaktion. Bei beiden Reaktionen hat sich gezeigt, dass die Sequenz der Katalysatoren sehr wichtig für die Katalyse ist. So verringert z.B. bei der Esterhydrolyse der Austausch zweier Aminosäuren eine Verringerung der Aktivität von dem Faktor 294 auf den Beschleunigungsfaktor 35. Auch konnten beide Katalysereaktionen in wässrigem gepufferten Lösung durchgeführt werden. Damit ist es möglich gewesen neue Oktapeptide für die Katalyse von Phosphat- und Esterspaltung zu finden und diese erfolgreich im Screening als auch in Lösung zu untersuchen. / The main focus of the thesis “Octapeptides as new organocatalysts for hydrolysis of phosphates and esters” was to find new octapeptides with the ability to hydrolyse phosphates and esters. In nature the secondary structure is essential for catalytic reactions. For this reason a model system was developed. With simple devices like diaminobutyl and guanidiniocarbonylpyrrol developed in the group of Schmuck a molecule should be build up, which could form a stable intramolecular loop in polar solvents. Due to the small size of the molecule no β-sheet could be formed. Nevertheless it could be demonstrated with the help of the NMR spectroscopy that in the polar solvent methanol a stable loop formation with an intramolekular complexation took place. After successfully producing and testing of the above test system the next step was to synthesize a combinatorial library with 625 organocatalysts members. The structure of the peptides can be broken down into three parts. The first part is the solid phase, the amino-TentaGel. To this the amino acids where coupled. Instead of a butyl group the literature known β-turn element Aib-D-Pro was used. Third part of the octapeptides was the varying amino acids in the position AA1, AA3, AA6 and AA8. Between amino acid AA1 and AA3 and AA6 and AA8 a glycine was used. These amino acids should build a β-sheet. The combinatorial synthesis of the library took place after the “split and mix” method.[90-93] To distinguish the individual members the resin was put in the IRORI MikroKans and a radio frequency chip was added to the resin. Due to the different amino acids the members of the library were designed for use in polar solvents as water. Two hydrolysis reactions were used as exemplary catalysis reactions. For both reactions a screening followed by catalysis in solution were performed under different conditions. Thereby it was found that for the cleavage of phosphate the artificial arginine analogue is essential for the catalysis. The best found catalyst for this reaction catalysed the reaction 175-times faster than without catalyst. For the screening of ester cleavage it was found that the amino acid histidine is essential for the catalytic activity. For that it is not surprising that the best catalyst has four histidine and catalysed the reaction 345-times faster compared with the uncatalysed reaction. For both reactions it could be shown that the sequence of the amino acids is of great importance for the catalytic activity. So for example reduced the exchange of two amino acids the activity from the accelerating factor 294 to 35 for the ester cleavage. Also one aim of these thesis was to carry out the hydrolysis under aqueous conditions and this was possible. All reactions were carried out in water with buffer. So it was possible to synthesis new octapeptides which show catalytic activity for the hydrolysis of phosphates and esters and to investigate this octapeptides successfully in the screening as well as in solution.
8

Funktionelle Charakterisierung von prokaryotischen und eukaryotischen Molybdoflavoenzymen / Functional characterization of prokaryotic and eukaryotic molybdoflavoenzymes

Schumann, Silvia January 2008 (has links)
Die Xanthin-Dehydrogenase aus Rhodobacter capsulatus ist ein cytoplasmatisches Enzym, welches ein (αβ)₂ Heterotetramer mit einer Größe von 275 kDa bildet. Die drei Kofaktoren (Moco, 2[2Fe2S], FAD) sind auf zwei unterschiedlichen Polypeptidketten gebunden. So sind die beiden spektroskopisch unterscheidbaren Eisen-Schwefel-Zentren und das FAD in der XdhA-Untereinheit und der Moco in der XdhB-Untereinheit gebunden. Im ersten Teil dieser Arbeit sollte untersucht werden, warum die R. capsulatus XDH ein Dimer bildet und ob ein intramolekularer Elektronentransfer existiert. Dafür wurde eine chimäre XDH-Variante [(α)₂(β₁wt/β₂E730A)] erzeugt, welche eine aktive und eine inaktive XdhB-Untereinheit trägt. Mit Hilfe von Reduktionsspektren sowie mit der Bestimmung der kinetischen Parameter für die Substrate Xanthin und NAD+ konnte gezeigt werden, dass die chimäre XDH-Variante katalytisch halb so aktiv war, wie der auf gleiche Weise gereinigte XDH-Wildtyp. Dies verdeutlicht, dass die noch aktive Untereinheit der Chimären selbstständig und unabhängig Substrat binden und hydroxylieren kann und ein intramolekularer Elektronentransfer zwischen den beiden XdhB-Untereinheiten nicht stattfindet. Ein weiteres Ziel war die funktionelle Charakterisierung der Mus musculus AOX1 sowie der humanen AOX1 hinsichtlich ihrer Substratspezifitäten und ihrer biophysikalischen Eigenschaften sowie der Charakterisierung der konservierten Aminosäuren im aktiven Zentrum der mAOX1. Da bislang noch kein heterologes Expressionssystem für ein aktives und stabiles rekombinantes AO-Protein existierte, wurde ein E. coli Expressionssystem mit der gleichzeitigen Expression der entsprechenden Mocosulfurase für mAOX1 und hAOX1 in dieser Arbeit etabliert. Mit Hilfe dieser Koexpression konnte die Aktivität der rekombinanten mAOX1 um 50 % gesteigert werden, wenn gleich auch der sulfurierte Moco-Anteil nur 20 % betrug. Um die konservierten Aminosäuren im aktiven Zentrum hinsichtlich ihrer Funktion der Substratbindung zu charakterisieren, wurden folgende Varianten erzeugt: V806E, M884R, V806/M884R sowie E1265Q. Mit Hilfe von kinetischen Substratuntersuchungen konnte gezeigt werden, dass die beiden Aminosäuren Val806 und Met884 für die Erkennung und die Stabilisierung von Aldehyden und N-Heterozyklen essentiell sind. Ein Austausch dieser beiden gegen Glutamat bzw. Arginin (wie bei R. capsulatus XDH) zeigte jedoch keine Xanthin- oder Hypoxanthinumsetzung. Für das Glu1265 wurde ebenfalls die Rolle als die Katalyse initiierende Aminosäure belegt. / The main task of this work was to analyse the function of R. capsualtus Xanthine Dehydrogenase (R.c. XDH; EC 1.17.1.4) as well as to characterize the structure and function of mouse Aldehyde Oxidase (mAOX1; EC 1.2.3.1). Both enzymes are complex metallo-flavoproteins that contain two nonidentical [2Fe2S] clusters, FAD and the molybdenum cofactor (Moco) as catalytically acting units. AO and XDH are members of the xanthine oxidase family characterized by an equatorial sulfur ligand at the Moco site essential for enzyme activity. To solve the question why R.capsualtus XDH forms a dimer a chimeric variant of bacterial XDH was produced and expressed in E.coli. By means of the (alphabeta)(2) XDH heterotetramer variant, that should include only one active Moco-center, it should be analysed if the two subunits act independent without cooperativity. AO is characterized by broad substrate specificity and this makes it an important enzyme for the metabolism of drugs and xenobiotica. The biochemical and physiological function of AO is still largely obscure and only limited information is available on the physiological substrates of AO or the role of the enzyme in mammalia. The substrate specificity of the recombinant AO should be determined by different purines and aldehydes. In order to determine the function of conserved amino acides, site directed mutagenesis of amino acides at the active site (Val806Glu, Met884Arg, Glu1265Gln) were introduced and enzyme activity was determined. Bacterial XDH is highly homologous to the homodimeric mammalian xanthine oxidoreductase - in the amino acid sequence and the secondary and tertiary protein structure as well as the reaction mechanism as described by Leimkühler et al. (2004). Therefore, in the second part of this work, bacterial XDH will be used as a benchmark for mAOX1 during determination of enzyme acitivities using different purines and aldehydes as substrates. A single monogentic deficit of AO has not been described for humans yet. To identify the biochemical function and to characterize the enzyme in detail a system for a heterologous expression of functionally active hAOX1 in E.coli should be established too.
9

The role of interfacial and 'entropic' enzymes in transitory starch degradation : a mathematical modeling approach

Kartal, Önder January 2011 (has links)
Plants and some unicellular algae store carbon in the form of transitory starch on a diurnal basis. The turnover of this glucose polymer is tightly regulated and timely synthesis as well as mobilization is essential to provide energy for heterotrophic growth. Especially for starch degradation, novel enzymes and mechanisms have been proposed recently. However, the catalytic properties of these enzymes and their coordination with metabolic regulation are still to be discovered. This thesis develops theoretical methods in order to interpret and analyze enzymes and their role in starch degradation. In the first part, a novel description of interfacial enzyme catalysis is proposed. Since the initial steps of starch degradation involve reactions at the starch-stroma interface it is necessary to have a framework which allows the derivation of interfacial enzyme rate laws. A cornerstone of the method is the introduction of the available area function - a concept from surface physics - to describe the adsorption step in the catalytic cycle. The method is applied to derive rate laws for two hydrolases, the Beta-amylase (BAM3) and the Isoamylase (DBE/ISA3), as well as to the Glucan, water dikinase (GWD) and a Phosphoglucan phosphatase (DSP/SEX4). The second part uses the interfacial rate laws to formulate a kinetic model of starch degradation. It aims at reproducing the stimulatory effect of reversible phosphorylation by GWD and DSP on the breakdown of the granule. The model can describe the dynamics of interfacial properties during degradation and suggests that interfacial amylopectin side-chains undergo spontaneous helix-coil transitions. Reversible phosphorylation has a synergistic effect on glucan release especially in the early phase dropping off during degradation. Based on the model, the hypothesis is formulated that interfacial phosphorylation is important for the rapid switch from starch synthesis to starch degradation. The third part takes a broader perspective on carbohydrate-active enzymes (CAZymes) but is motivated by the organization of the downstream pathway of starch breakdown. This comprises Alpha-1,4-glucanotransferases (DPE1 and DPE2) and Alpha-glucan-phosphorylases (Pho or PHS) both in the stroma and in the cytosol. CAZymes accept many different substrates and catalyze numerous reactions and therefore cannot be characterized in classical enzymological terms. A concise characterization is provided by conceptually linking statistical thermodynamics and polymer biochemistry. Each reactant is interpreted as an energy level, transitions between which are constrained by the enzymatic mechanisms. Combinations of in vitro assays of polymer-active CAZymes essential for carbon metabolism in plants confirmed the dominance of entropic gradients. The principle of entropy maximization provides a generalization of the equilibrium constant. Stochastic simulations confirm the results and suggest that randomization of metabolites in the cytosolic pool of soluble heteroglycans (SHG) may contribute to a robust integration of fluctuating carbon fluxes coming from chloroplasts. / Stärke hat eine herausragende Bedeutung für die menschliche Ernährung. Sie ist ein komplexes, wasserunlösliches Glucosepolymer und dient - als eine der wichtigsten Speicherformen von Kohlenhydraten in Pflanzen - der Aufrechterhaltung des Energiestoffwechsels. Unterschiedliche Organe enthalten Stärke. In Knollen und Samen wird die sogenannte Speicherstärke über lange Zeiträume auf- und abgebaut. Die im Allgemeinen weniger bekannte transitorische Stärke in Blättern und einigen einzelligen Algen wird in einem täglichen Rhythmus umgesetzt: Sie wird während der Photosynthese aufgebaut und in der Nacht abgebaut. Experimentelle Studien haben nachgewiesen, dass die Fähigkeit der Pflanze, den Abbau transitorischer Stärke zu regeln, essentiell ist, um während der Nacht das Wachstum der Pflanze zu gewährleisten. Da die Geschwindigkeit von biochemischen Reaktionen über Enzyme reguliert wird, ist die Aufklärung ihrer Funktion im Stoffwechsel eine notwendige Voraussetzung, um den komplexen Prozess des Wachstums zu erklären. Die vorliegende Arbeit stellt einen Versuch dar, die Funktion von Enzymen beim Stärkeabbau anhand von mathematischen Modellen und Computersimulationen besser zu verstehen. Dieser Ansatz erlaubt es, Eigenschaften des Systems durch Abstraktion anhand eines idealisierten Abbildes herzuleiten. Die mathematisch notwendigen Folgerungen dienen der Aufstellung von Hypothesen, die wiederum mit experimentellen Resultaten konfrontiert werden können. Stoffwechselsysteme sind komplexe Untersuchungsobjekte, bei denen eine rein qualitative Argumentation schnell an Grenzen gerät, wo mathematische Methoden die Möglichkeit von Aussagen noch zulassen. Der erste Teil der Arbeit entwickelt einen theoretischen Rahmen, um Gleichungen für die Geschwindigkeit oberflächenaktiver Enzyme herzuleiten. Dies ist notwendig, da die ersten Reaktionen, die dem Stärkeabbau zugeordnet werden, an ihrer Oberfläche stattfinden. Die Methode wird auf vier essentielle Enzyme angewandt: zwei abbauende Enzyme (Beta-Amylase und Isoamylase) und zwei den Abbau unterstützende Enzyme (Alpha-Glucan,Wasser-Dikinase und Phosphoglucan Phosphatase). Der zweite Teil entwickelt ein kinetisches Modell des Stärkeabbaus unter Verwendung der hergeleiteten Ratengleichungen. Das Modell bildet die Dynamik des Systems realistisch ab und legt nahe, dass ein spontaner Phasenübergang an der Oberfläche von geordneten zu weniger geordneten Zuständen stattfindet. Ferner wird die Hypothese aufgestellt, dass die reversible Modifikation der Oberfläche durch Enzyme besonders in der Anfangsphase des Abbaus einen synergetischen Effekt hat, d.h. den Abbau enorm beschleunigt. Dies könnte beim schnellen Umschalten von Stärkeaufbau zu Stärkeabbau regulatorisch relevant sein. Im letzten Teil werden kohlenhydrataktive Enzyme betrachtet, die in der löslichen Phase die Produkte des Stärkeabbaus weiterverarbeiten. Da diese sogenannten Transferasen auch in vielen anderen Organismen und Stoffwechselwegen vorkommen, wird ein allgemeiner Standpunkt eingenommen. Anhand von Methoden aus der statistischen Physik wird theoretisch wie experimentell nachgewiesen, dass diese Enzyme spontan die Entropie innerhalb des Stoffwechselsystems erhöhen. Diese Neigung, "Unordnung" zu schaffen, wird vom Organismus aber paradoxerweise ausgenutzt, um die Weiterverarbeitung von Kohlenhydraten im Stärkestoffwechsel zu stabilisieren. Dieser Mechanismus eröffnet einen neuen Blick auf energie- und entropiegetriebene Prozesse in Zellen.
10

Charakterisierung des ATP-gekoppelten Elektronentransfers zwischen dem Corrinoid-Iron-Sulfur-Protein von Carboxydothermus hydrogenoformans und seinem Aktivator

Neumann, Felix 23 August 2021 (has links)
In der vorliegenden Arbeit wurde der ATP-gekoppelte uphill Elektronentransfer von reduziertem RACo auf Kobalt(II)-CoFeSP untersucht. Dazu wurden zunächst die Bedingungen der rekombinanten Genexpression in Escherichia coli und die Reinigungsstrategie der Proteine verbessert, um einen Cofaktorgehalt beider Proteine von annähernd 100 % zu erreichen. Anschließend wurden die Reaktionsbedingungen des Elektronentransfers optimiert, um eine tiefergehende Analyse zu ermöglichen. Die Ergebnisse dieser Arbeit deuten darauf hin, dass durch die Bindung von ATP ein bidirektionaler Elektronentransfer induziert wird. Der Elektronentransfer konnte mit nicht-hydrolysierbaren ATP-Analoga und mit ADP induziert werden. Weder für die nicht-hydrolysierbaren ATP-Analoga noch für ADP konnten anschließend Hydrolyseprodukte nachgewiesen werden. Zusätzlich konnte für die limitierende Rate der ATP-Hydrolyse ein mehr als 100-fach kleinerer Wert bestimmt werden als für den Elektronentransfer. Beide Ergebnisse zeigen, dass der Elektronentransfer unabhängig von der ATP-Hydrolyse ist. Kobalt(I)-CoFeSP kann jedoch auch ein Elektron auf oxidiertes RACo übertragen, was auf einen bidirektionalen Elektronentransfer hindeutet. Diese These wurde mit der Beobachtung untermauert, dass sich durch Zugabe von ADP und der Erhöhung der ADP-Konzentration die Anzahl der transferierten Elektronen pro CoFeSP zunimmt und sich somit die Lage des entstehenden Gleichgewichts verschieben lässt. Auf dieser Datengrundlage konnten drei mögliche Modelle für den Reaktionsmechanismus erstellt werden, von welchen ein Modell als am wahrscheinlichsten erscheint. In diesem Reaktionsmechanismus gleichen sich die Redox-Potentiale beider Redox-Zentren durch die ATP-Bindung an. Dies ermöglicht den Elektronentransfer vom [2Fe2S]-Cluster von RACo auf das Kobalt-Ion des Cobalamins. Die Rückreaktion wird durch eine erneute Reduktion des [2Fe2S]-Clusters verhindert und durch die anschließende ATP-Hydrolyse dissoziiert der Komplex. / In the present work, ATP-coupled uphill electron transfer from reduced RACo to cobalt(II)-CoFeSP was investigated. For this purpose, the conditions of recombinant gene expression in Escherichia coli and the purification strategy of the proteins were improved to achieve a cofactor content of both proteins close to 100%. Subsequently, the electron transfer reaction conditions were optimized to enable a more in-depth analysis. The results of this work indicate that a bidirectional electron transfer is induced by the binding of ATP. Electron transfer could be induced with non-hydrolysable ATP analogues and with ADP. Neither for the nonhydrolyzable ATP analogues nor for ADP hydrolysis products could subsequently be detected. In addition, a value more than 100-fold smaller could be determined for the limiting rate of ATP hydrolysis than for electron transfer. Both results indicate that electron transfer is independent of ATP hydrolysis. However, cobalt(I)-CoFeSP can also transfer an electron to oxidized RACo, suggesting bidirectional electron transfer. This hypothesis was supported with the observation that adding ADP and increasing the ADP concentration increases the number of transferred electrons per CoFeSP by shifting the position of the emerging equilibrium. Based on these data, three possible models for the reaction mechanism are suggested, of which one model appears to be the most plausible. In this reaction mechanism, the redox potentials of both redox centers equalize due to ATP binding. This allows electron transfer from the [2Fe2S] cluster of RACo to the cobalt ion of cobalamin. The back reaction is prevented by a further reduction of the [2Fe2S] cluster, and subsequent ATP hydrolysis dissociates the complex

Page generated in 0.0698 seconds