• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the frictional and baroclinic contributions to stratified wake formation: a parameter space study

Smith, Jamie Brooke 16 August 2006 (has links)
The baroclinic and surface-frictional contributions to stratified wake formation are considered as a function of the non-dimensional height ( = Nho/U) and aspect-ratio ( = ho/L) of the barrier. Numerical simulations are computed for a wide range of the - parameter space, including both unstratified ( = 0) and highly stratified ( = 4) flows and for terrain slopes characteristic of both geophysical ( = 0.1) and laboratory scale ( = 2.0) obstacles. Simulations both with and without applied surface stresses are compared to gain insight into the baroclinic and surface-frictional contributions to each flow. Particular emphasis is given to the changes in kinematic wake structure, the relative contributions of skin and pressure drag, and the vertical momentum flux observed as the mountain height and terrain slope are varied. We also examine several cases from the parameter-space study in more detail using a method for decomposing the flow into baroclinic and viscous parts. The decompositions show that for large- and small- flows, wake generation is primarily baroclinic in nature, while at smaller- and/or larger-, the wake becomes increasingly surface frictional.
2

The nonlinear dynamics of the sea breeze

Walter, Kevin Robert 15 November 2004 (has links)
The response of the land and sea breeze circulation to two highly simplified dynamical models is presented. The first dynamical model is the explicit specification of an oscillating interior heat source analogous to that from Rotunno (1983). Emphasis is placed on the variation of the response with heating amplitude and latitude. In addition, a weakly nonlinear analysis focuses on the dynamic forcing of nonlinear features such as a semi-diurnal gravity wave, fronts, and asymmetry in the magnitude of onshore and offshore flow. One surprising result is the identification of a cycle-mean surface divergence pattern at both 0? and 45?. At 45?, this divergence pattern is accompanied by a cycle mean shore-parallel response due to the Earth's rotation. The second dynamical model is the explicit specification of an oscillating surface heat flux. Again, comparison is made between simulations at different heating amplitudes, and between simulations at different latitudes. To address changes in the solution due to the heating method itself, comparison is made between solutions from the surface heating method and solutions from the interior heating method. Finally, solutions across the planetary continuum are explored for critical latitude dependence in high-amplitude simulations.
3

Assessing the frictional and baroclinic contributions to stratified wake formation: a parameter space study

Smith, Jamie Brooke 16 August 2006 (has links)
The baroclinic and surface-frictional contributions to stratified wake formation are considered as a function of the non-dimensional height ( = Nho/U) and aspect-ratio ( = ho/L) of the barrier. Numerical simulations are computed for a wide range of the - parameter space, including both unstratified ( = 0) and highly stratified ( = 4) flows and for terrain slopes characteristic of both geophysical ( = 0.1) and laboratory scale ( = 2.0) obstacles. Simulations both with and without applied surface stresses are compared to gain insight into the baroclinic and surface-frictional contributions to each flow. Particular emphasis is given to the changes in kinematic wake structure, the relative contributions of skin and pressure drag, and the vertical momentum flux observed as the mountain height and terrain slope are varied. We also examine several cases from the parameter-space study in more detail using a method for decomposing the flow into baroclinic and viscous parts. The decompositions show that for large- and small- flows, wake generation is primarily baroclinic in nature, while at smaller- and/or larger-, the wake becomes increasingly surface frictional.

Page generated in 0.0228 seconds