• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 431
  • 114
  • 89
  • 71
  • 49
  • 10
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 983
  • 280
  • 260
  • 189
  • 158
  • 139
  • 127
  • 121
  • 118
  • 117
  • 112
  • 104
  • 103
  • 78
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Epigenetic profiling of the developing zebrafish embryo, and technical developments towards cloning zebrafish and isolating pluripotent stem cells

Thakrar, Sanjay January 2009 (has links)
In normal embryonic development, cells generated from a fertilised oocyte lose their pluripotent status and become restricted to a particular differentiation pathway. This production of functionally distinct cell lineages is thought to be mediated by epigenetic processes that help control gene expression both temporally and spatially without any changes to the DNA sequence. These epigenetic changes consist of posttranslational modifications of the N-terminal tails of histones and differential DNA methylation. Together these act by altering local chromatin structure, which in turn directs gene transcription by regulating the accessibility of the underlying DNA. To examine the potential developmental roles of these modifications, we determined the global cellular patterns of DNA methylation, as well as histone H3 lysine 9 (H3K9) and histone H4 lysine 20 (H4K20) methylation in the developing zebrafish embryo. These modifications are seen as hallmarks of heterochromatin, which consists of DNA that is tightly packaged, gene-poor and transcriptionally silent. Thus using immunostaining techniques, we confirmed the occurrence of genome-wide DNA methylation changes during zebrafish embryogenesis, as well as observing the unique localisation of this mark around the nuclear periphery in conjunction with pericentric heterochromatin. For mono-, di- and tri-methylated H3K9, it was observed by both immunostaining and immunoblotting that these marks became apparent after the onset of zygotic transcription. Ultimately their levels increased as development progressed, in a fashion similar to that of DNA methylation, consistent with a link between these epigenetic marks. Using the same methodology, the three methylation states of H4K20 were seen to vary differentially during zebrafish development, where in particular the levels of H4K20me1 decreased in concert with a potentially sumoylated form. In contrast, the levels of H4K20me2 increased progressively during embryogenesis, while those of H4K20me3 decreased rapidly after the mid-blastula transition. Together, these findings demonstrate that both DNA and histone lysine methylation take place in a highly dynamic manner, further supporting their roles in augmenting chromatin structure and directing cellular differentiation, while also providing a valuable comparison to the developmental epigenetics of other model organisms characterised to date. Preparatory work for somatic cell nuclear transfer in zebrafish was also undertaken. In future studies, the dynamics of these marks could be compared with those of cloned embryos, so that the specific epigenetic profiles necessary for development can be elucidated. Epigenetically, a homologous process occurs within pluripotent embryonic stem cells (ESCs), which can differentiate into any cell type or undergo indefinite self-renewal. Advantageously, we were able to derive zebrafish ESC-like clusters which were morphologically similar to those derived from mice. These clusters were alkaline phosphatase-positive and expressed key ESC markers as detected by RT-PCR and immunofluorescence. In pilot studies, GFP-expressing ESC-like clusters have so far also contributed to ectodermal tissues when transplanted into wild type zebrafish embryos. Subsequently, these ESC-like clusters were epigenetically profiled using immunofluorescence, which showed that they had a similar complement of modifications to ESCs derived from mice. The derivation and initial characterisation of these ESC-like clusters from zebrafish, in addition to the development of somatic cell nuclear transfer in this species, will help pave the way for future studies involving tissue repair and regeneration, as well as opening up the potential of targeted genetic manipulation in this valuable model organism.
152

The Role of Neuronal DNA Methyltransferase 1 in Energy Homeostasis and Obesity

Bruggeman, Emily C. 09 May 2016 (has links)
Obesity is a grave disease that is increasing in global prevalence. Aberrant neuronal DNA methylation patterns have been implicated in the promotion of obesity development, but the role of neuronal DNA methyltransferases (Dnmts; enzymes that catalyze DNA methylation) in energy balance remains poorly understood. We investigated the role of neuronal Dnmt1 in normal energy regulation and obesity development using a novel Dnmt1 knockout mouse model, Dnmt1fl/fl Synapsin1Cre (ND1KO), which specifically deletes Dnmt1 in neurons. ND1KO and fl/fl control littermates were fedeither a standard chow diet or a high fat diet (HFD). We conducted a deep analysis to characterize both peripheral and central aspects of the ND1KO phenotype. We found that neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and attenuated obesity in HFD-fed male mice. ND1KO male mice had reduced food intake and increased energy expenditure on the HFD. Furthermore, these mice had improved insulin sensitivity as measured by an insulin tolerance test. HFD-fed ND1KO mice had smaller fat pads and an upregulation of thermogenic genes in brown adipose tissue. These data suggest that neuronal Dnmt1 deletion increased diet-induced thermogenesis, which may explain the lean phenotype in HFD-fed ND1KO mice. Interestingly, we found that ND1KO male mice had elevated estrogen receptor-α gene expression in the hypothalamus, which previously has been shown to control body weight. Immunohistochemistry experiments revealed that estrogen receptor-α (ERα) protein expression was upregulated in the dorsomedial region of the VMH (VMHdm), a region which may mediate the central effect of leptin. Finally, we tested whether ND1KO mice had reduced methylation of the ERα gene promoter, which might explain the ERα upregulation. Neuronal Dnmt1 deficiency decreased methylation at two CpG sites on Exon A in chow-fed mice. Collectively, these data suggest that neuronal Dnmt1 regulates energy homeostasis through pathways controlling food intake and energy expenditure, and that ERα in the VMHdm may mediate these effects.
153

MicroRNA and Epigenetic Controls of CD4+ T cells' Activation, Differentiation and Maintenance

Li, Chaoran January 2014 (has links)
<p>As a major component of the adaptive immune system, CD4+ T cells play a vital role in host defense and immune tolerance. The potency and accuracy of CD4+ T cell-mediated protection lie in their ability to differentiate into distinct subsets that could carry out unique duties. In this dissertation, we dissected the roles and interplays between two emerging mechanisms, miRNAs and epigenetic processes, in regulating CD4+ T cell-mediated responses. Using both gain- and loss-of-function genetic tools, we demonstrated that a miRNA cluster, miR-17-92, is critical to promote Th1 responses and suppress inducible Treg differentiation. Mechanistically, we found that through targeting Pten, miR-17-92 promotes PI3K activation. Strong TCR-PI3K activation leads to the accumulation of DNMT1, elevated CpG methylation in the foxp3 promoter, and suppression of foxp3 transcription. Furthermore, we demonstrated that an epigenetic regulator, methyl CpG binding protein 2 (MeCP2), is critical to sustain Foxp3 expression in Tregs, and to support Th1 and Th17 differentiation in conventional CD4+ T cells (Tcons). In Tregs, MeCP2 directly binds to the CNS2 region of foxp3 locus to promote its local histone H3 acetylation; while in Tcons, MeCP2 enhances the locus accessibility and transcription of miR-124, which negatively controls SOCS5 translation to support STAT1, STAT3 activation and Th1, Th17 differentiation. Overall, miRNAs and epigenetic processes may crosstalk to control CD4+ T cell differentiation and function.</p> / Dissertation
154

Individual Differences in Neural Reward and Threat Processing: Identifying Pathways of Risk and Resilience for Psychopathology

Nikolova, Yuliya January 2014 (has links)
<p>The goal of this dissertation is two-fold: 1) to identify novel biological pathways implicating individual differences in reward and threat processing in the emergence of risk and resilience for psychopathology, 2) to identify novel genetic and epigenetic predictors of the inter-individual variability in these biological pathways. Four specific studies are reported wherein blood oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI) was used to measure individual differences in threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity; self-report was used to measure of mood and psychopathology as well as the experience of stressful life events. In addition, DNA was derived from peripheral tissues to identify specific genetic and epigenetic markers.</p><p>Results from Study 1 demonstrate that individuals with relatively low reward-related VS reactivity show stress-related reductions in positive affect, while those with high VS reactivity remain resilient to these potentially depressogenic effects. Heightened VS reactivity was, however, associated with stress-related increases in problem drinking in Study 2. Importantly, this effect only occurred in individuals showing concomitantly reduced threat-related amygdala reactivity. Study 3 demonstrates that using a multilocus genetic profile capturing the cumulative impact of five functional polymorphic loci on dopamine signaling increases power to explain variability in reward-related VS reactivity relative to an approach considering each locus independently. Finally, Study 4 provides evidence that methylation in the proximal promoter of the serotonin transporter gene is negatively correlated with gene expression and positively correlated with threat-related amygdala reactivity above and beyond the effects of commonly studied functional DNA-sequence based variation in the same genomic vicinity.</p><p>The results from these studies implicate novel biological pathways, namely reward-related VS reactivity and threat-related amygdala reactivity, as predictors of relative risk or resilience for psychopathology particularly in response to stressful life events. Moreover, the results suggest that genetic and epigenetic markers may serve as easily accessible peripheral tissue proxies for these neural phenotypes and, ultimately, risk and resilience. Such markers may eventually be harnessed to identify vulnerable individuals and facilitate targeted early intervention or prevention efforts.</p> / Dissertation
155

Epigenetic Dysregulations in the Brain of Human Alcoholics : Analysis of Opioid Genes

Bazov, Igor January 2016 (has links)
Neuropeptides are special in their expression profiles restricted to neuronal subpopulations and low tissue mRNA levels. Genetic, epigenetic and transcriptional mechanisms that define spatiotemporal expression of the neuropeptide genes have utmost importance for the formation and functions of neural circuits in normal and pathological human brain. This thesis focuses on regulation of transcription of the opioid/nociceptin genes, the largest neuropeptide family, and on identification of adaptive changes in these mechanisms associated with alcoholism as model human pathology. Two epigenetic mechanisms, the common for most cells in the dorsolateral prefrontal cortex (dlPFC) and the neuron-subpopulation specific that may orchestrate prodynorphin (PDYN) transcription in the human dlPFC have been uncovered. The first, repressive mechanism may operate through control of DNA methylation/demethylation in a short, nucleosome size promoter CpG island (CGI). The second mechanism may involve USF2, the sequence–specific methylation–sensitive transcription factor which interaction with its target element in the CpG island results in USF2 and PDYN co-expression in the same neurons. The short PDYN promoter CGI may function as a chromatin element that integrates cellular and environmental signals through changes in methylation and transcription factor binding. Alterations in USF2–dependent PDYN transcription are affected by the promoter SNP (rs1997794: T&gt;C) under transition to pathological state, i.e. in the alcoholic brain. This and two other PDYN SNPs that are most significantly associated with alcoholism represent CpG-SNPs, which are differentially methylated in the human dlPFC. The T, low risk allele of the promoter SNP forms a noncanonical AP-1–binding element. JUND and FOSB proteins, which may form homo- or heterodimers have been identified as dominant constituents of AP-1 complex. The C, non-risk variant of the PDYN 3′ UTR SNP (rs2235749 SNP: C&gt;T) demonstrated significantly higher methylation in alcoholics compared to controls. PDYN mRNA and dynorphin levels significantly and positively correlated with methylation of the PDYN 3′ UTR CpG-SNP suggesting its involvement in PDYN regulation. A DNA–binding factor with differential binding affinity for the T allele and methylated and unmethylated C alleles of the PDYN 3′ UTR SNP (the T allele specific binding factor, Ta-BF) has been discovered, which may function as a regulator of PDYN transcription. These findings emphasize the complexity of PDYN regulation that determines its expression in specific neuronal subpopulations and suggest previously unknown integration of epigenetic, transcriptional and genetic mechanisms that orchestrate alcohol–induced molecular adaptations in the human brain. Given the important role of PDYN in addictive behavior, the findings provide a new insight into fundamental molecular mechanisms of human brain disorder. In addition to PDYN in the dlPFC, the PNOC gene in the hippocampus and OPRL1 gene in central amygdala that were downregulated in alcoholics may contribute to impairment of cognitive control over alcohol seeking and taking behaviour.
156

A pilot study on potential involvement of epigenetic regulations secondary to perturbed intrauterine environment

Lam, Shih-en., 林詩恩. January 2008 (has links)
published_or_final_version / Paediatrics and Adolescent Medicine / Master / Master of Philosophy
157

Investigation of the proteomic interaction profile of uncoupling protein 3 and its effect on epigenetics

Yan, Xiwei 18 September 2014 (has links)
Uncoupling proteins (UCPs) are localized on the inner mitochondrial membrane (IMM) and “uncouple” the electrochemical proton gradient formed by the electron transport chain (ETC) from ATP production. Though the prototypical uncoupling protein 1 (UCP1) is known to mediate the cold-induced thermogenesis in rodents and human neonates, the physiological and biochemical functions of the homologs UCP2-5 are still under debate. Our research focuses on UCP3, the homolog prevalently expressed in skeletal muscle (SKM), the most important metabolic organs. UCP3 has long been speculated to have a pivotal role in maintaining the mitochondrial metabolism. Several biochemical roles have been attributed to UCP3, including the regulation of fatty-acid transport and oxidation, reactive oxygen species (ROS) scavenging and calcium uptake. And several proteins have been identified to directly bind with UCP3 and facilitate its function. But to further understand how UCP3 relates to different aspects of mitochondrial functions, a more comprehensive profile of the UCP3 interaction partners is needed. We performed a mass spectrometry-based experiment and successfully identified a list of over 170 potential proteins that may directly or indirectly interact with UCP3, and several novel functions of UCP3 are implied by these protein-protein interactions. Additionally, researches have shown that the metabolic defects are important contributing factors to the epigenetic changes. Considering the roles of UCP3 in sustaining the normal mitochondrial metabolism, we hypothesized that UCP3 has a novel function in regulating the genomic DNA methylation processes. The data we obtained from the pilot study confirms that loss of UCP3 will lead to aberrant DNA methylation changes. But further experiment is still needed to investigate the regulatory pathway between UCP3 and DNA methylation. The physiological role of UCP3 in defending against cancer, diabetes and obesity has been investigated, but the mechanisms how UCP3 protect the organism from these diseases have not been elucidated. Our research sheds light on the understanding of UCP3 functions and may be of significant therapeutic benefit in the prevention and treatment of these diseases. / text
158

Epigenetic Regulation of Breast Cancer Type-1 Gene by the Activated Aromatic Hydrocarbon Receptor and the Preventative Effects of Resveratrol

Papoutsis, Andreas January 2012 (has links)
Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorobenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XRE=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XRE in the proximal BRCA-1 promoter, and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-alpha-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17-beta estradiol (E2)-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR, DNA methyl transferases (DNMT)1, DNMT3a, and DNMT3b; methyl binding protein (MBD)2; and tri-methylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation, and the recruitment of the AhR, MBD2, H3K9me3, and DNMTs (1, 3a, and 3b). Taken together, these observations provide evidence for a mechanistic role for AhR-agonists in establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.
159

Transcriptional and Epigenetic Regulation of Epithelial-Mesenchymal Transition

Tan, E-Jean January 2013 (has links)
The transforming growth factor beta (TGFβ) is a cytokine that regulates a plethora of cellular processes such as cell proliferation, differentiation, migration and apoptosis. TGFβ signals via serine/threonine kinase receptors and activates the Smads to regulate gene expression. Enigmatically, TGFβ has a dichotomous role as a tumor suppressor and a tumor promoter in cancer. At early stages of tumorigenesis, TGFβ acts as a tumor suppressor by exerting growth inhibitory effects and inducing apoptosis. However, at advanced stages, TGFβ contributes to tumor malignancy by promoting invasion and metastasis. The pro-tumorigenic TGFβ potently triggers an embryonic program known as epithelial-mesenchymal transition (EMT). EMT is a dynamic process whereby polarized epithelial cells adapt a mesenchymal morphology, thereby facilitating migration and invasion. Downregulation of cell-cell adhesion molecules, such as E-cadherin and ZO-1, is an eminent feature of EMT. TGFβ induces EMT by upregulating a non-histone chromatin factor, high mobility group A2 (HMGA2). This thesis focuses on elucidating the molecular mechanisms by which HMGA2 elicits EMT. We found that HMGA2 regulates a network of EMT transcription factors (EMT-TFs), such as members of the Snail, ZEB and Twist families, during TGFβ-induced EMT. HMGA2 can interact with Smad complexes to synergistically induce Snail expression. HMGA2 also directly binds and activates the Twist promoter. We used mouse mammary epithelial cells overexpressing HMGA2, which are mesenchymal in morphology and highly invasive, as a constitutive EMT model. Snail and Twist have complementary roles in HMGA2-mesenchymal cells during EMT, and tight junctions were restored upon silencing of both Snail and Twist in these cells. Finally, we also demonstrate that HMGA2 can epigenetically silence the E-cadherin gene. In summary, HMGA2 modulates multiple reprogramming events to promote EMT and invasion.
160

Development of ligands to target bromodomain-histone interactions

Jennings, Laura Elizabeth January 2015 (has links)
Histone acetylation is an epigenetic post-translational modification recognised by the bromodomain, a protein module that forms part of multi-component complexes affecting transcription. This interaction plays fundamental cellular roles, and shows association with particular diseases including inflammation and cancer. The biological roles of bromodomains and the progress of ligands developed so far has been summarised in introductory Chapter 1. Work within the group has led to the development of a nanomolar ligand for BRD4, a BET bromodomain implicated in cancer and numerous diseases. Evaluation in an NCI-60 cancer cell screen indicated antiproliferative activity in a variety of cancer types. However, metabolic predictions indicate that this compound is unoptimised for use in vivo. Chapter 2 describes synthesis of a collection of analogues to improve the physical and pharmacokinetic properties of this series of compounds. This work identified compounds with equivalent affinity but greater predicted metabolic stability, as well as more potent derivatives. This research will direct the design of potent and metabolically stable derivatives that can be used in animal models. Chapter 3 describes work carried out towards the development of small molecules to target bromodomains for which there are no known ligands, using the FALZ bromodomain as an initial target. A fragment-based approach has identified a number of compounds that bind to different non-BET bromodomains. These fragments will be a useful starting point for the development of more potent and selective non-BET bromodomain ligands. As well as acetylated lysines, a number of other acylation post-translational modifications occur on lysine residues. Chapter 4 describes work carried out to investigate the interaction of other acylated lysine residues with bromodomains. This work highlighted that other acylated lysines can interact with bromodomains, and selectivity for particular bromodomains can also be achieved. These modified lysines could be incorporated into cognate peptides to improve in vitro peptide displacement assays, aiding the development of small molecular bromodomain probes.

Page generated in 0.0464 seconds