• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 429
  • 114
  • 89
  • 71
  • 49
  • 9
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 979
  • 277
  • 258
  • 188
  • 158
  • 139
  • 127
  • 121
  • 117
  • 116
  • 112
  • 103
  • 102
  • 78
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Epigenetic Regulation of Higher Order Chromatin Conformations and Gene Transcription

Göndör, Anita January 2007 (has links)
Epigenetic states constitute heritable features of the chromatin to regulate when, where and how genes are expressed in the developing conceptus. A special case of epigenetic regulation, genomic imprinting, is defined as parent of origin-dependent monoallelic expression. The Igf2-H19 locus is considered as paradigm of genomic imprinting with a growth-promoting gene, Igf2, expressed paternally and a growth antagonist, H19 encoding a non-coding transcript, expressed only from the maternal allele. The monoallelic expression patterns are regulated by the epigenetic status at an imprinting control region (ICR) in the 5´-flank of the H19 gene. The chromatin insulator protein CTCF interacts with only the maternal H19 ICR allele to prevent downstream enhancers to communicate with the Igf2 promoters. Mutations of these CTCF binding sites lead to biallelic Igf2 expression, increased size of the conceptus and predisposition for cancer. Reasoning that these effects cannot be explained by the regulation of Igf2 expression alone, a technique was invented to examine long-range chromatin interactions without prior knowledge of the interacting partners. Applying the circular chromosomal conformation capture (4C) technique to mouse neonatal liver cells, it was observed that 114 unique sequences interacted with the H19 ICR. A majority of these interactors was in complex with only the maternal H19 ICR allele and depended on the presence of functional CTCF binding sites. The functional consequence of chromosomal networks was demonstrated by the observation that the maternal H19 ICR allele regulated the transcription of two genes on another chromosome. As the chromosomal networks underwent reprogramming during the maturation of embryonic stem cells, attention was turned to human cancer cells, displaying features common with mouse embryonic stem cells. Subsequently, chromatin folding at the human H19 ICR suggested that stable chromatin loops were organized by synergistic interactions within and between baits and interactors. The presence of these interactions was linked to DNA methylation patterns involving repeat elements. A "flower" model of chromatin networks was formulated to explain these observations. This thesis has unravealed a novel feature of the epigenome and its functions to regulate gene expression in trans. The identified roles for CTCF as an architectural factor in the organization of higher order chromatin conformations may be of importance in understanding development and disease ontogeny from novel perspectives.
192

Targeting of painting of fourth to roX1 and roX2 proximal sites suggests evolutionary links between dosage compensation and the regulation of the 4th chromosome in Drosophila melanogaster

Lundberg, Lina E, Kim, Maria, Johansson, Anna-Mia, Faucillion, Marie-Line, Josupeit, Rafael, Larsson, Jan January 2013 (has links)
In Drosophila melanogaster, two chromosome-specific targeting and regulatory systems have been described. The male-specific lethal (MSL) complex supports dosage compensation by stimulating gene expression from the male X-chromosome and the protein Painting of fourth (POF) specifically targets and stimulates expression from the heterochromatic 4(th) chromosome. The targeting sites of both systems are well characterized, but the principles underlying the targeting mechanisms have remained elusive. Here we present an original observation, namely that POF specifically targets two loci on the X-chromosome, PoX1 and PoX2 (POF-on-X). PoX1 and PoX2 are located close to the roX1 and roX2 genes, which encode ncRNAs important for the correct targeting and spreading of the MSL-complex. We also found that the targeting of POF to PoX1 and PoX2 is largely dependent on roX expression and identified a high-affinity target region which ectopically recruits POF. The results presented support a model linking the MSL-complex to POF and dosage compensation to regulation of heterochromatin.
193

Identifying Tissue Specific Distal Regulatory Sequences in the Mouse Genome

Chen, Chih-yu 06 December 2011 (has links)
Epigenetic modifications, transcription factor (TF) availability and chromatin conformation influence how a genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. In this report, enhancer identification is first carried out using an enhancer associated feature in mouse erythroid cells. Taking advantage of public domain ChIP-Seq data sets in mouse embryonic stem cells, an integrative model is then used to assess features in enhancer prediction, and subsequently locate enhancers. Significant associations with multiple TF bound loci, higher expression in the closest genes, and active enhancer marks support functionality and tissue-specificity of these enhancers. Motif enrichment analysis further determines known and novel TFs regulating the target cell type. Furthermore, the features identified can facilitate more accurate enhancer prediction in other cell types.
194

Search for DNA Methylation Biomarkers in the Circulating DNA of Prostate and Colorectal Cancer

Park, Mina 15 August 2012 (has links)
Early diagnosis represents an effective way to improve patient prognosis in cancer. New opportunities for cancer diagnosis and screening may arise from identification of cancer-specific epigenetic alterations in the cell-free circulating DNA (cirDNA). This study investigated biomarkers at the level of DNA methylation in the plasma cirDNA of individuals affected with prostate cancer or colorectal cancer. A methylation-sensitive restriction enzyme-based method was used to enrich methylated DNA fractions, which were interrogated on CpG island and human genome tiling microarrays. A number of genes and non-coding loci exhibited differential methylation between prostate cancer patients and controls. The candidate loci identified from these microarray experiments underwent verification by bisulfite modification coupled with pyrosequencing. Our results suggest that microarray-based studies of DNA methylation in the cirDNA can be a promising avenue for the identification of epigenetic biomarkers in cancer.
195

Identifying Tissue Specific Distal Regulatory Sequences in the Mouse Genome

Chen, Chih-yu 06 December 2011 (has links)
Epigenetic modifications, transcription factor (TF) availability and chromatin conformation influence how a genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. In this report, enhancer identification is first carried out using an enhancer associated feature in mouse erythroid cells. Taking advantage of public domain ChIP-Seq data sets in mouse embryonic stem cells, an integrative model is then used to assess features in enhancer prediction, and subsequently locate enhancers. Significant associations with multiple TF bound loci, higher expression in the closest genes, and active enhancer marks support functionality and tissue-specificity of these enhancers. Motif enrichment analysis further determines known and novel TFs regulating the target cell type. Furthermore, the features identified can facilitate more accurate enhancer prediction in other cell types.
196

Search for DNA Methylation Biomarkers in the Circulating DNA of Prostate and Colorectal Cancer

Park, Mina 15 August 2012 (has links)
Early diagnosis represents an effective way to improve patient prognosis in cancer. New opportunities for cancer diagnosis and screening may arise from identification of cancer-specific epigenetic alterations in the cell-free circulating DNA (cirDNA). This study investigated biomarkers at the level of DNA methylation in the plasma cirDNA of individuals affected with prostate cancer or colorectal cancer. A methylation-sensitive restriction enzyme-based method was used to enrich methylated DNA fractions, which were interrogated on CpG island and human genome tiling microarrays. A number of genes and non-coding loci exhibited differential methylation between prostate cancer patients and controls. The candidate loci identified from these microarray experiments underwent verification by bisulfite modification coupled with pyrosequencing. Our results suggest that microarray-based studies of DNA methylation in the cirDNA can be a promising avenue for the identification of epigenetic biomarkers in cancer.
197

Epigenetic rRgulation in the Placenta and its Role in Fetal Growth

Pinto Barreto Ferreira, Jose Carlos 11 January 2012 (has links)
Fetal growth potential reflects a complex regulatory system delivered by genetic and environmental factors acting directly on the fetus or through the placenta. Compromise of this potential, as seen in intrauterine growth restriction (IUGR), is associated with increased perinatal mortality and short and long term morbidity. The expression of several genes has been shown to be disturbed in placentas of fetuses with growth restriction. However, the primary causes for these changes have not yet been elucidated. I proposed that epigenetic mechanisms, specifically DNA methylation, may be involved in placental development leading to modulation of the expression of specific genes, and that their altered regulation will impact fetal development and growth. My primary objective was to identify DNA methylation variation in placenta, in association with variation of gene expression and with poor fetal growth. I used a global genomic screening approach, with 24 selected placental samples, from newborns considered IUGR or normal controls, to identify candidate target genomic regions carrying epigenetic alterations. Candidate regions were followed up, by expression analysis of corresponding regulated genes, for associations with altered expression and by targeted methylation analysis in an expanded cohort of 170 samples, for associations with birthweight percentile. I analyzed methylation variation at imprinting centers (IC), gene promoters and CpG islands. In two genome-wide case control screening studies using distinct commercial microarray platforms I identified approximately 68 differentially methylated autosomal candidate genomic regions overlapping gene promoters. Hypomethylated CpGs mapping to gene promoters were found to be more abundant in placentas of growth restricted newborns than in controls. One of the most interesting candidates, WNT2, was analyzed in an extended sample cohort and showed an association of high promoter methylation to low expression as well as low birthweight percentile. This gene is involved in a pathway that diverts cells from programmed apoptosis. It is highly expressed in placenta, and in mice, targeted biallelic inactivation of Wnt2 has been shown to cause poor growth and perinatal death in 50% of the affected pups. These findings support the hypothesis that dysregulation of epigenetic mechanisms are involved in abnormal placental development and can impact fetal growth.
198

TE variation in natural populations of Drosophila : copy number, transcription and chromatin state

Rebollo, Rita 26 October 2009 (has links) (PDF)
Transposable elements (TEs) are one major force of genome evolution thanks to theirability to create genetic variation. TEs are ubiquitous and their proportion is variable between species and also populations, suggesting that a tight relationship exists between genomes and TEs. The model system composed of the natural populations of the twin sisters Drosophila melanogaster and D. simulans is interesting to compare host/TE relationship, since both species harbour different amounts of TE copies. The helena element is nearly silenced in D.simulans natural populations despite a very high copy number. Such repression is associated to abundant internally deleted copies suggesting a regulatory mechanism of TEs based on DNA deletion. Another pathway of TE regulation is through epigenetics where the host genome is able to keep intact the DNA sequences of TEs and still silence their activities.Chromatin remodelling is well known in drosophila and specific histone modifications can be associated to specific chromatin domains. We observed an important variation on H3K27me3and H3K9me2, two heterochromatic marks, on TE copies in D. melanogaster and D. simulans natural populations. Also, we show that derepressed lines of D. simulans exist for specific elements, have high TE transcription rates and are highly associated to non constitutive heterochromatic marks. TEs are therefore controlled by the host genome through DNA deletion and a possible chromatin remodelling mechanism. Not only genetic variability is enhanced by TEs but also epigenetic variability, allowing the host genome to be partitioned into chromatin domains. TEs are therefore mandatory to gene network regulation through their ability of "jumping epigenetics".
199

Epigenetic rRgulation in the Placenta and its Role in Fetal Growth

Pinto Barreto Ferreira, Jose Carlos 11 January 2012 (has links)
Fetal growth potential reflects a complex regulatory system delivered by genetic and environmental factors acting directly on the fetus or through the placenta. Compromise of this potential, as seen in intrauterine growth restriction (IUGR), is associated with increased perinatal mortality and short and long term morbidity. The expression of several genes has been shown to be disturbed in placentas of fetuses with growth restriction. However, the primary causes for these changes have not yet been elucidated. I proposed that epigenetic mechanisms, specifically DNA methylation, may be involved in placental development leading to modulation of the expression of specific genes, and that their altered regulation will impact fetal development and growth. My primary objective was to identify DNA methylation variation in placenta, in association with variation of gene expression and with poor fetal growth. I used a global genomic screening approach, with 24 selected placental samples, from newborns considered IUGR or normal controls, to identify candidate target genomic regions carrying epigenetic alterations. Candidate regions were followed up, by expression analysis of corresponding regulated genes, for associations with altered expression and by targeted methylation analysis in an expanded cohort of 170 samples, for associations with birthweight percentile. I analyzed methylation variation at imprinting centers (IC), gene promoters and CpG islands. In two genome-wide case control screening studies using distinct commercial microarray platforms I identified approximately 68 differentially methylated autosomal candidate genomic regions overlapping gene promoters. Hypomethylated CpGs mapping to gene promoters were found to be more abundant in placentas of growth restricted newborns than in controls. One of the most interesting candidates, WNT2, was analyzed in an extended sample cohort and showed an association of high promoter methylation to low expression as well as low birthweight percentile. This gene is involved in a pathway that diverts cells from programmed apoptosis. It is highly expressed in placenta, and in mice, targeted biallelic inactivation of Wnt2 has been shown to cause poor growth and perinatal death in 50% of the affected pups. These findings support the hypothesis that dysregulation of epigenetic mechanisms are involved in abnormal placental development and can impact fetal growth.
200

States of Allelic Imbalance on the X Chromosomes in Human Females

Kucera, Katerina S. January 2011 (has links)
<p>Allelic imbalance, in which two alleles at a given locus exhibit differences in gene expression, chromatin composition and/or protein binding, is a widespread phenomenon in the human and other complex genomes. Most examples concern individual loci located more or less randomly around the genome and thus imply local and gene-specific mechanisms. However, genomic or chromosomal basis for allelic imbalance is supported by multi-locus examples such as those exemplified by domains of imprinted genes, spanning ~1-2 Mb, or by X chromosome inactivation, involving much of an entire chromosome. Recent studies have shown that genes on the two female X chromosomes exhibit a breadth of expression patterns ranging from complete silencing of one allele to fully balanced biallelic expression. Although evidence for heritability of allele-specific chromatin and expression patterns exists at individual loci, it is unknown whether heritability is also reflected in the chromosome-wide patterns of X inactivation.</p><p>The aim of this thesis is to elucidate the extent to which the widespread variable patterns of allelic imbalance on the human X chromosome in females are under genetic control and how access of the transcription machinery to the human inactive X chromosome in females is determined at a genomic level. For the set of variable genes examined in this study, the absence or presence of expression appears to be stochastic with respect to the population rather than abiding by strict genetic rules. Furthermore, variable gene expression that I have detected even among multiple clonal cell lines derived from a single individual suggests fluctuation in transcriptional machinery engagement. I find that, although expression at most genes on the human inactive X chromosome is repressed as a result of X inactivation, a number of loci are accessible to the transcriptional machinery. It appears that RNA Polymerase II is present at alleles on the inactive X even at the promoters of several silenced genes, indicating a potential for expression. </p><p>This thesis embodies a transition in the field of human X chromosome inactivation from gene by gene approaches used in the past to utilizing high-throughput technologies and applying follow-up analytic techniques to draw upon the vast data publicly available from large consortia projects.</p> / Dissertation

Page generated in 0.0742 seconds