• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2269
  • 849
  • 442
  • 188
  • 121
  • 84
  • 56
  • 55
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5018
  • 979
  • 787
  • 596
  • 527
  • 491
  • 488
  • 468
  • 457
  • 432
  • 426
  • 335
  • 301
  • 298
  • 295
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Calcul de la solution d'une équation intégrale singulière de Cauchy par itérations

Guessous, Najib 12 June 1984 (has links) (PDF)
On adapte des méthodes numériques efficaces pour équations de Fredholm à la résolution d'équations singulières. On développe en particulier les variantes itératives de Brakhage et d' Atkinson de la méthode de Nyström. Les exemples numériques traités confirment la nette supériorité de la méthode itérative de Brakhage
182

Solution Methods for Certain Evolution Equations

January 2013 (has links)
abstract: Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion. / Dissertation/Thesis / Ph.D. Applied Mathematics for the Life and Social Sciences 2013
183

Modélisation et étude mathématique de réseaux de câbles électriques / Mathematical modeling of electrical networks

Beck, Geoffrey 31 March 2016 (has links)
Cette thèse porte sur la modélisation d'un réseau de câbles coaxiaux et multi-conducteurs. Ce dernier peut être mathématiquement traduit par les équations aux dérivées partielles de Maxwell qui régissent la propagation des ondes électromagnétiques en son sein ou par un modèle type circuit électrique d'inconnues - les potentiels et courants électriques- qui vérifient sur les branches du circuit l'équation des télégraphistes et sur les noeuds les lois de Kirchhoff.Si la première méthode est assez générale pour comprendre toutes sortes de défauts, elle néanmoins trop couteuse pour les applications que nous avons en tête, à savoir le contrôle non destructif. La seconde quant à elle est obtenue par une modélisation non issue de la théorie de Maxwell et est valide que si les câbles sont parfaits (cylindriques, sans pertes...). Nous avons établi diverses modèles 1D venant généraliser l'équation des télégraphistes et les lois de Kirchhoff pour y incorporer diverses défauts (géométrie, pertes, effet de peau, caractéristique des matériaux variables) tant sur les câbles que dans les jonctions. Ceux-ci sont obtenus via des analyses asymptotiques (classiques, multi-échelles, raccordées) des équations 3D de Maxwell en considérant certains paramètres (dimensions transverses des câbles par rapport à leurs longueurs, conductivité du milieu diélectrique par rapport à celle du métal des âmes, petite taille de la zone de jonction par rapport à l'ensemble du réseau) extrêmement petits.Une des difficultés mathématiques tient en ce que les domaines que nous prendrons en compte (sections des câbles, jonctions) ne sont aucunement simplement connexes, nous obligeant ainsi à remanier quelques outils standard tel les décompositions en potentiels. / This thesis aim to modelize network made of coaxial and multi-conductors cables.It could be mathematically represent with the Maxwell equations which deals on electromagnetic waves propagating in the network or an electrical circuit whose unknowns - the electrical potentials and currents - satisfy the telegrapher's equation on each branches and the Kirchhoff's laws on each knots.The first method is enough general to integrate many defaults but numerically too expansive for the application we have in mind, namely non destructive testing. The second one is not obtained from the Maxwell theory and it is valid if and only if the cable are perfect (cylindrical, lossless...). We derive some 1D models generalizing the usual telegrapher's equation and Kirchhoff's rules from Maxwell's equation. This new models integrate plenty of defects (geometry, losses, skin-effect, materials' characteristics varying) and are derive via asymptotic analysis (classical ones, multi-scales ones, matched ones) by considering very small parameters (transverse dimensions of the cables relative to length of the cables, conductivity of the dielectric part relative to the metal of the inner-wires, size of the junction part relative to the whole network).One of the mathematical difficult is due to the fact that the geometry we will consider (sections of the cables, junctions) are not simply connected. Thus we will generalize usual tools such as the Helmholtz decompositions.
184

Relaxation Effects in Magnetic Nanoparticle Physics: MPI and MPS Applications

Wu, Yong 23 August 2013 (has links)
No description available.
185

Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires

Godinho Pereira, David 25 November 2013 (has links) (PDF)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré 'a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules)
186

Stability Analysis of Systems of Difference Equations

Clinger, Richard A. 01 January 2007 (has links)
Difference equations are the discrete analogs to differential equations. While the independent variable of differential equations normally is a continuous time variable, t, that of a difference equation is a discrete time variable, n, which measures time in intervals. A feature of difference equations not shared by differential equations is that they can be characterized as recursive functions. Examples of their use include modeling population changes from one season to another, modeling the spread of disease, modeling various business phenomena, discrete simulations applications, or giving rise to the phenomena chaos. The key is that they are discrete, recursive relations. Systems of difference equations are similar in structure to systems of differential equations. Systems of first-order linear difference equations are of the form x(n + 1) = Ax(n) , and systems of first-order linear differential equations are of the form x(t) = Ax(t). In each case A is a 2x2 matrix and x(n +1), x(n), x(t), and x(t) are all vectors of length 2. The methods used in analyzing systems of difference equations are similar to those used in differential equations.Solutions of scalar, second-order linear difference equations are similar to those of scalar, second-order differential equations, but with one major difference: the composition of their general solutions. When the eigenvalues of A, λ1 and λ2, are real and distinct, general solutions of differential equations are of the form x(t) = c1eλ1t +c2eλ2t, while general solutions of difference equations are of form x(n) = 1λn1 + c2λn2. So, on the one hand, while the methods used in examining systems of difference equations are similar to those used for systems of differential equations; on the other hand, their general solutions can exhibit significantly different behavior.Chapter 1 will cover systems of first-order and second-order linear difference equations that are autonomous (all coefficients are constant). Chapter 2 will apply that theory to the local stability analysis of systems of nonlinear difference equations. Finally, Chapter 3 will give some example of the types of models to which systems of difference equations can be applied.
187

Constant speed flows and the nonlinear Schr??dinger equation

Grice, Glenn Noel, Mathematics, UNSW January 2004 (has links)
This thesis demonstrates how the geometric connection between the integrable Heisenberg spin equation, the nonlinear Schr??dinger equation and fluid flows with constant velocity magnitude along individual streamlines may be exploited. Specifically, we are able to construct explicitly the complete class of constant speed flows where the constant pressure surfaces constitute surfaces of revolution. This class is undoubtedly important as it contains many of the specific cases discussed earlier by other authors.
188

Viscoelastic Mobility Problem Using A Boundary Element Method

Nhan, Phan-Thien, Fan, Xi-Jun 01 1900 (has links)
In this paper, the complete double layer boundary integral equation formulation for Stokes flows is extended to viscoelastic fluids to solve the mobility problem for a system of particles, where the non-linearity is handled by particular solutions of the Stokes inhomogeneous equation. Some techniques of the meshless method are employed and a point-wise solver is used to solve the viscoelastic constitutive equation. Hence volume meshing is avoided. The method is tested against the numerical solution for a sphere settling in the Odroyd-B fluid and some results on a prolate motion in shear flow of the Oldroyd-B fluid are reported and compared with some theoretical and experimental results. / Singapore-MIT Alliance (SMA)
189

Equations d'évolution sur certains groupes hyperboliques

Jamal Eddine, Alaa 06 December 2013 (has links) (PDF)
Cette thèse porte sur l'étude d'équations d'évolution sur certains groupes hyperboliques, en particulier, nous étudions l'équation de la chaleur, l'équation de Schrödinger et l'équation des ondes modifiée, d'abord sur les arbres homogènes, ensuite sur des graphes symétriques. Sur les arbres homogènes, nous montrons que, sous une hypothèse d'invariance de jauge, on a existence globale des solutions de l'équation de Schrödinger ainsi qu'un phénomène de 'scattering' pour des données arbitraires dans l'espace des fonctions de carré intégrable sans restriction sur le degré de la non-linéarité, contrairement au cas euclidien ou au cas hyperbolique. Nous généralisons ensuite ce résultat sur les graphes symétriques de degré (k − 1)(r − 1) sous la condition k < r. Un de nos principaux résultats sur les graphes symétriques est l'estimation du noyau de la chaleur associé au laplacien combinatoire. Pour finir, nous établissons une expression explicite des solutions de l'équation des ondes modifiée sur les graphes symétriques.
190

Oscillation Of Second Order Dynamic Equations On Time Scales

Kutahyalioglu, Aysen 01 August 2004 (has links) (PDF)
During the last decade, the use of time scales as a means of unifying and extending results about various types of dynamic equations has proven to be both prolific and fruitful. Many classical results from the theories of differential and difference equations have time scale analogues. In this thesis we derive new oscillation criteria for second order dynamic equations on time scales.

Page generated in 0.0989 seconds