11 |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires / Contribution to the study of Boltzmann's, Kac's and Keller-Segel's equations with non-linear stochastic differentials equationsGodinho Pereira, David 25 November 2013 (has links)
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré `a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules) / This thesis is devoted to the study of the asymptotic of grazing collisions for Kac's and Boltzmann's equations and to the study of the chaos propagation for some sub-critical Keller-Segel equation with non-linear Stochastic Differentials Equations. The first chapter is devoted to the Kac equation with a Maxwellian potential. We start by giving an explicit rate of convergence (than we believe to be optimal) for the asymptotic of grazing collisions. Then, we approximate the solution of Kac's equation in the general case, which allows us to show the chaos propagation for some particle system to this last one in a quantitative way. In the second chapter, we study the asymptotic of grazing collisions for the Boltzmann equation with soft and Coulomb potentials. We also give explicit rates of convergence (which are not optimal).Finally in the third and last chapter, we show the chaos propagation for some sub-critical Keller-Segel equation. To this aim, we use compactness arguments (tightness of the particle system)
|
12 |
Méthodes de résolution d'équations algébriques et d'évolution en dimension finie et infinie / Some methods of solving of algebraic and evolution equations in finite and infinite dimensionalBoussandel, Sahbi 10 December 2010 (has links)
Dans la présente thèse, on s’intéresse à la résolution de problèmes algébriques et d’évolution en dimension finie et infinie. Dans le premier chapitre, on a étudié l’existence globale et la régularité maximale d’un système gradient abstrait avec des applications à des problèmes de diffusion non-linéaires et à une équation de la chaleur avec des coefficients non-locaux. La méthode utilisée est la méthode d’approximation de Galerkin. Dans le deuxième chapitre, on a étudié l’existence locale, l’unicité et la régularité maximale des solutions de l’équation de raccourcissement des courbes en utilisant le théorème d’inversion locale. Finalement, dans le dernier chapitre, on a résolu une équation algébrique entre deux espaces de Banach en utilisant la méthode de Newton continue avec une application à une équation différentielle avec des conditions aux limites périodiques / In this work, we solve algebraic and evolution equations in finite and infinite-dimensional sapces. In the first chapter, we use the Galerkin method to study existence and maximal regularity of solutions of a gradient abstract system with applications to non-linear diffusion equations and to non-degenerate quasilinear parabolic equations with nonlocal coefficients. In the second chapter, we Study local existence, uniqueness and maximal regularity of solutions of the curve shortening flow equation by using the local inverse theorem. Finally, in the third chapter, we solve an algebraic equation between two Banach spaces by using the continuous Newton’s method and we apply this result to solve a non-linear ordinary differential equation with periodic boundary conditions.
|
13 |
A new cubic equation of stateAtilhan, Mert 30 September 2004 (has links)
Thermodynamic properties are essential for the design of chemical processes, and they are most useful in the form of an equation of state (EOS). The motivating force of this work is the need for accurate prediction of the phase behavior and thermophysical properties of natural gas for practical engineering applications. This thesis presents a new cubic EOS for pure argon. In this work, a theoretically based EOS represents the PVT behavior of pure fluids. The new equation has its basis in the improved Most General Cubic Equation of State theory and forecasts the behavior of pure molecules over a broad range of fluid densities at both high and low pressures in both single and multiphase regions. With the new EOS, it is possible to make accurate estimations for saturated densities and vapor pressures. The density dependence of the equation results from fitting isotherms of test substances while reproducing the critical point, and enforcing the critical point criteria. The EOS includes analytical functions to fit the calculated temperature dependence of the new EOS parameters.
|
14 |
A new cubic equation of stateAtilhan, Mert 30 September 2004 (has links)
Thermodynamic properties are essential for the design of chemical processes, and they are most useful in the form of an equation of state (EOS). The motivating force of this work is the need for accurate prediction of the phase behavior and thermophysical properties of natural gas for practical engineering applications. This thesis presents a new cubic EOS for pure argon. In this work, a theoretically based EOS represents the PVT behavior of pure fluids. The new equation has its basis in the improved Most General Cubic Equation of State theory and forecasts the behavior of pure molecules over a broad range of fluid densities at both high and low pressures in both single and multiphase regions. With the new EOS, it is possible to make accurate estimations for saturated densities and vapor pressures. The density dependence of the equation results from fitting isotherms of test substances while reproducing the critical point, and enforcing the critical point criteria. The EOS includes analytical functions to fit the calculated temperature dependence of the new EOS parameters.
|
15 |
Numerical studies of nonlinear Schrödinger and Klein-Gordon systems : techniques and applications /Choi, Dae-il, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 152-162). Available also in a digital version from Dissertation Abstracts.
|
16 |
The Wave Equation in One DimensionCarlson, Kenneth Emil 01 1900 (has links)
It is intended that this paper present an acceptable proof of the existence of a solution for the wave equation.
|
17 |
Blow-up of solutions to nonlinear parabolic equations and systemsFloater, Michael S. January 1988 (has links)
No description available.
|
18 |
Stability and interaction of waves in coupled nonlinear Schrödinger type systemsChiu, Hok-shun., 趙鶴淳. January 2009 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
19 |
Density functional theory for moleculesLaming, Gregory John January 1994 (has links)
No description available.
|
20 |
Aspects of Kalecki's methodKriesler, P. R. T. January 1987 (has links)
This thesis consists of three papers which examine three aspects of Kalecki's method, from differing levels of abstraction. The first is at the level of theory and traces the evolution of Kalecki's pricing equation for the manufacturing sector of modern capitalist economies. It is argued that, although the general determinants of price in the form of a mark-up on unit costs remained constant, nevertheless Kalecki tried many different models in order to obtain microfoundations consistent with his macroanalysis. His original formulation incorporated only considerations specific to the firm, although wider considerations entered into the 'degree of monopoly' which was the main determinant of the mark-up. Later versions explicitly allowed for the role of competitors within the industry by incorporating the industry average price into the pricing equation. The second paper considers the interrelationship of two different types of theory - the microanalysis described in the earlier paper with the Kalecki's macroanalysis. In doing so it attempts to shed some light on the methodological issues associated with microfoundations. In particular, it is shown that, for Kalecki, neither 'macro' nor 'micro' dominate, but that the two jointly determine both the level of output and the level of employment. The final paper is concerned with questions relating to the nature of theorizing, and compares Kalecki's approach to this with Keynes'. It specifically considers the reasons behind Keynes' hostility, as editor of the <i>Economic Journal</i>, to papers submitted by Kalecki. This hostility is traced to important methodological differences which can best be thought of in terms of paradigm (or conceptual framework) clashes. The clashes related to such differences as different starting points for theory, different levels of abstraction and views about generality, and differing views about the relative importance of induction versus deduction.
|
Page generated in 0.094 seconds