• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

Lu, Hongjiang 13 July 2009 (has links) (PDF)
Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the sand rock is sediment from river channel, the permeability heterogeneity and heavy oil properties together lead to extremely poor water flooding efficiency. In order to improve the oil recovery, IOR methods are needed urgently. Considering all practical situations for this reservoir and present technique level, polymer flooding method has been selected as an IOR test with numerical simulation. For polymer flooding, since polymer resolution has the capability of enlarging water viscosity, it controls the mobility of water phase and at the same time improves the driving efficiency. During polymer flooding simulation, many factors must be taken into account for the construction of mathematical model, such as inaccessible pore volume, polymer shear thinning effect, polymer adsorption, relative permeability reduction factors, etc. All simulations were done with black oil model with polymer option in ECLIPSE. Simulation results for a theoretical river channel reservoir with serious permeability heterogeneity and heavy oil, and simulation results for practical reservoir Ng21, both have shown that polymer flooding is a feasible method for IOR. For reservoir Ng21, with polymer slug size of 0.235 PV, polymer concentration at 1.5 kg/m3, the final oil recovery after polymer flooding could reach 12.8%, the enhanced oil recovery is about 5%. If only the developable oil reserve being taken into account, the final oil recovery is about 34%, and enhanced oil recovery from polymer flooding is more than 12%. For such heavy oil river channel reservoir to reach such a final oil recovery, it could be concluded as a great success. Since there are still many such oil reservoirs in Shengli Oilfields Area, polymer flooding will be of great importance for improving oil recovery in this area in the near future.
2

Optimization of fracturing fluid to increase shale gas production

Liu, Yong 04 December 2020 (has links)
As same as other countries in the world, China is also facing the problem of a severe shortage of energy. Specifically, the demand for natural gas is rising explosively after the energy consumption structure has changed from oil to gas. Due to various reasons and motivations, shale has been considered having great reserves and believed in alleviating the energy crisis. Nevertheless, the massive investment in developing shale has a disappointing interest with low-yielding production. Scholars have done many researches and experiments for investigating the causes and increasing the productivity of shale formation, in field and in laboratory respectively. Based on the statistics, more details, and further discussion, in this dissertation a probable method for more effectively producing was demonstrated. Although the hydro-fracturing technology has been conducted in field frequently, sometimes the decrease of permeability has been observed after the treatment. To figure out this phenomenon, the investigation started from the basic characterization of matrix. Believed in the most component in shale, quartz consisted of silica which could dissolve in fluid. Been assigned as variables, temperature, pH, and salinity have been implemented for explanation of dissolution. Temperature played a great role in the process. Combined with confining pressure, the reconsolidation happened inside samples. Through more experiments the mechanism of reconsolidation has been discovered that both confining pressure and temperature are necessary for gelling in fracture. Perspective on the whole formation, well logs were a super supplement to laboratory experiments. It serviced not only a further confirmation, but also pointed out the relationship between desorption capacity and different components. Samples from upper and lower formations have been used for going further. The exchange which exists between N2 and CH4 could be a great idea to exploit gas from reservoir. Feldspar supported space for adsorbed gas, and it was also easy to release. In contrast, the organic matter in which a network of pores developed has ability to trap the gas deeply because of the specific surface area. Quartz had positive effect on production because of containing the organic matter, while the influence of clay minerals on adsorption and desorption could be neglected. Based on the analysis of reconsolidation and desorption, an idea has been conceived using foam as fracturing fluid for increasing gas production. Compared to the pure fluid, foam has less water, which could prevent the reconsolidation. Nitrogen could be the gas to foam. The exchange between N2 and CH4 will increase the production of gas. In order to serve the condition that increases the time of exchange and makes negative effect on reconsolidation simultaneously, the foaming test with ABS and K12 has been evaluated first. For better stability of foam more experiment have been done. Three formulas were recommended which could keep the balance between the increasing viscosity and decreasing volume. The work interpreted in this thesis has enhanced our understanding of microscopic properties of shale and was expected to make contribution to further research of fracturing and production design.
3

Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

Lu, Hongjiang 06 April 2004 (has links)
Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the sand rock is sediment from river channel, the permeability heterogeneity and heavy oil properties together lead to extremely poor water flooding efficiency. In order to improve the oil recovery, IOR methods are needed urgently. Considering all practical situations for this reservoir and present technique level, polymer flooding method has been selected as an IOR test with numerical simulation. For polymer flooding, since polymer resolution has the capability of enlarging water viscosity, it controls the mobility of water phase and at the same time improves the driving efficiency. During polymer flooding simulation, many factors must be taken into account for the construction of mathematical model, such as inaccessible pore volume, polymer shear thinning effect, polymer adsorption, relative permeability reduction factors, etc. All simulations were done with black oil model with polymer option in ECLIPSE. Simulation results for a theoretical river channel reservoir with serious permeability heterogeneity and heavy oil, and simulation results for practical reservoir Ng21, both have shown that polymer flooding is a feasible method for IOR. For reservoir Ng21, with polymer slug size of 0.235 PV, polymer concentration at 1.5 kg/m3, the final oil recovery after polymer flooding could reach 12.8%, the enhanced oil recovery is about 5%. If only the developable oil reserve being taken into account, the final oil recovery is about 34%, and enhanced oil recovery from polymer flooding is more than 12%. For such heavy oil river channel reservoir to reach such a final oil recovery, it could be concluded as a great success. Since there are still many such oil reservoirs in Shengli Oilfields Area, polymer flooding will be of great importance for improving oil recovery in this area in the near future.
4

Einfluss akustischer Wellen auf Mehrphasenströmung in porösen Medien: Entwicklung eines EOR-Verfahrens

Reichmann, Sven 08 August 2018 (has links)
Inhalt der Arbeit sind theoretische und experimentelle Untersuchungen zum Einfluss akustischer Wellen auf das Verhalten mehrphasiger Strömungen in porösen Medien. Die Arbeit schlug mittels Frequenzanalyse Anregungsfrequenzen mit erhöhter Wahrscheinlichkeit den Strömungsvorgang positiv für die Erdölförderung zu beeinflussen. Die vorgeschlagenen Frequenzen erzielten auf verschiedenen Parametern erfolgreich eine positive Beeinflussung des Wasserdurchbruchspunktes, des Entölungsgrades und der relativen Permeabilität. Zur Erhöhung der Aussagekraft der Daten wurden Verfahren der multivariaten Statistik erfolgreich eingesetzt. Zudem wurden positive Rückkopplungseffekte mit dem Einsatz oberflächenaktiver Substanzen nachgewiesen. In einem abschließenden Schritt konnte die Wirkung des Verfahrens zudem durch Kombination mehrere Frequenzen optimiert werden. Diese von hoher Wichtigkeit geprägten Charakteristika zeigen klar das Potential des Verfahrens zum Einsatz als Verfahren der verbesserten Erdölförderung (EOR) auf.:1. Kurzfassung 5 2. Einleitung 6 2.1. Die primäre und sekundäre Förderphase 7 2.2. Tertiäre Fördermethoden 9 2.3. Akustische Verfahren 14 2.4. Aufgabenstellung 17 3. Grundlagen 18 3.1. Projektvorstellung 19 3.1.1. Vorstellung der Sonde 20 3.1.2. Eingrenzung der Laborparameter 22 3.2. Einordnung des Verfahrens in den Stand der Technik 23 3.2.1. Impuls- und Frequenzverfahren 23 3.2.2. Frequenzbereiche 25 3.3. Auswertemethoden 27 3.3.1. Frequenzanalysen 27 3.3.2. Flutversuche und relative Permeabilität 28 3.3.3. Imbibitionsversuche 32 3.4. Grundlagen der mathematischen Methoden 33 3.4.1. Fouriertransformation 34 3.4.2. Gradientenverfahren 34 3.4.3. Regressionsanalyse 37 4. Laborarbeiten 39 4.1. Versuchsaufbau 39 4.1.1. Flutanlage 39 4.1.2. Imbibitionsgefäße 42 4.2. Versuchsdurchführung 44 4.3. Der Versuchsplan der Flutexperimente 48 4.4. Voruntersuchungen 49 4.4.1. Gesteinsproben 49 4.4.2. Fluidproben 50 5. Datenauswertung 52 5.1. Frequenzanalyse 52 5.2. Flutversuche 55 5.2.1. Ergebnis der Regressionsanalyse 59 5.3. Imbibitionsversuche 61 5.4. Phänomenologische Untersuchungen 63 5.4.1. Injektivitätsveränderung 63 5.4.2. Instabile Emulsionsbildung 65 5.5. Weitergehende Forschungsansätze 67 5.5.1. Rückkopplungseffekte mit Tensiden 67 5.5.2. Bohrlochregeneration 69 6. Diskussion 71 7. Zusammenfassung 75
5

Experimental study of surfactant-aided enhanced oil recovery in carbonate rock

Kühne, Jonathan 16 August 2024 (has links)
The application of surfactants and polymers in carbonate reservoirs has a high potential with emerging technology of the manufacture of these chemicals. Tertiary or enhanced oil recovery with chemicals (CEOR) will become more relevant with decreasing new exploration of oil deposits and high remaining oil saturations in huge carbonate oil reservoirs. However, in several oil deposits, high reservoir brine salinity and moderate to high reservoir temperature are encountered. Under such conditions, many chemicals will be insoluble or degrade fast. A selection of commercial and research surfactants and polymers has been investigated for their application under brine salinity of up to 18 percent by weight with significant hardness and a moderate reservoir temperature of 70 °C. Chemical systems were tested towards outcrop limestone rock samples and calcite platelets in combination with a crude oil, which was modified by different organic acids regarding its wetting potential. Wettability alteration from preferentially oil-wet core plugs was pursued with ethoxylated tertiary amines and quaternary ammonium compounds. The main mechanism of wettability alteration towards more water-wet was proposed as extraction of carboxylate anions from the oil phase and the solid samples into aqueous micelles. Thus, high surfactant concentrations would result in improved recovery. From screening of different surfactant combinations in tertiary core flooding, one promising system of an alkyl ether sulfate and hexadecyltrimethylammonium combined with a terpolymer (TP) from acrylic acid, ATBS and NVP is proposed for the examined conditions. Low to moderate adsorption of the single surfactants and their combination as well as a favorable, stabilized phase behavior when combined with the polymer emphasize the applicability of the system. However, long term stability can be an issue with respect to the sulfate surfactant degradation at 70 °C. Analysis of mixed ionic surfactant systems after adsorption testing has been successfully pursued with a combined TC/TNb-determination.
6

Laboratory Investigations on the Applicability of Triphenoxymethanes as a New Class of Viscoelastic Solutions in Chemical Enhanced Oil Recovery

Dieterichs, Christin 30 April 2018 (has links) (PDF)
Even in times of renewable energy revolution fossil fuels will play a major role in energy supply, transportation, and chemical industry. Therefore, increasing demand for crude oil will still have to be met in the next decades by developing new oil re-serves. To cope with this challenge, companies and researchers are constantly seeking for new methods to increase the recovery factor of oil fields. For that reason, many enhanced oil recovery (EOR) methods have been developed and applied in the field. EOR methods alter the physico-chemical conditions inside the reservoir. One possibility to achieve this is to inject an aqueous solution containing special chemicals into the oil-bearing zone. Polymers, for example, increase the viscosity of the injected water and hence improve the displacement of the oil to the production well. The injection of surfactant solutions results in reduced capillary forces, which retain the oil in the pores of the reservoir. Some surfactants form viscoelastic solutions under certain conditions. The possibil-ity to apply those solutions for enhanced oil recovery has been investigated by some authors in the last years in low salinity brines. Reservoir brines, however, often contain high salt concentrations, which have detrimental effects on the properties of many chemical solutions applied for EOR operations. The Triphenoxymethane derivatives, which were the subject of study in this thesis, form viscoelastic solutions even in highly saline brines. The aim of this thesis was to investigate the efficiency and the mode-of-action of this new class of chemical EOR molecules with respect to oil mobilization in porous media.
7

Laboratory Investigations on the Applicability of Triphenoxymethanes as a New Class of Viscoelastic Solutions in Chemical Enhanced Oil Recovery

Dieterichs, Christin 30 January 2018 (has links)
Even in times of renewable energy revolution fossil fuels will play a major role in energy supply, transportation, and chemical industry. Therefore, increasing demand for crude oil will still have to be met in the next decades by developing new oil re-serves. To cope with this challenge, companies and researchers are constantly seeking for new methods to increase the recovery factor of oil fields. For that reason, many enhanced oil recovery (EOR) methods have been developed and applied in the field. EOR methods alter the physico-chemical conditions inside the reservoir. One possibility to achieve this is to inject an aqueous solution containing special chemicals into the oil-bearing zone. Polymers, for example, increase the viscosity of the injected water and hence improve the displacement of the oil to the production well. The injection of surfactant solutions results in reduced capillary forces, which retain the oil in the pores of the reservoir. Some surfactants form viscoelastic solutions under certain conditions. The possibil-ity to apply those solutions for enhanced oil recovery has been investigated by some authors in the last years in low salinity brines. Reservoir brines, however, often contain high salt concentrations, which have detrimental effects on the properties of many chemical solutions applied for EOR operations. The Triphenoxymethane derivatives, which were the subject of study in this thesis, form viscoelastic solutions even in highly saline brines. The aim of this thesis was to investigate the efficiency and the mode-of-action of this new class of chemical EOR molecules with respect to oil mobilization in porous media.
8

The influence of physico-chemical surface properties and morphological and topological pore space properties on trapping (CCS) and recovery efficiency (EOR): a micromodel visualization study

Golmohammadi, Saeed 26 October 2023 (has links)
We theoretically and experimentally investigate the impact of pore space structure, wettability, and surface roughness on the displacement front, trapping, and sweeping efficiency at low capillary numbers. The microstructure of (i) 2D geologically-realistic media (2D natural sand and sandstone), (ii) a topological 3D-2D-transformation (2D sand analog), and (iii) geometrically representative media (Delaunay Triangulation) were studied over a wide range of wettability from water-wet to oil-wet systems provided by using various fluid-pairs. We observed the transition (compact to fractal) in the displacement front caused by local instabilities identified by Cieplak and Robbins. The trapping efficiency of 2D natural microstructures showed a non-monotonous dependency on wettability, whereas a crossover from no trapping to maximal trapping was observed in 2D patterns of circular grains. For the first time, we compared identical experimental microstructures with simulation, capturing the key elements of the invasion process. We demonstrated that corner flows occur particularly in low-porosity media, where the smaller grain-grain distance hindered the corner-flow bridging. These insights could improve the CO2 geological storage and Enhanced Oil Recovery processes.
9

Investigations on the influence of pore structure and wettability on multiphase flow in porous medium using x-ray computed tomography: Application to underground CO2 storage and EOR

Zulfiqar, Bilal 28 May 2024 (has links)
Capillary trapping plays a central role in the geological storage of CO2, oil recovery, and water soil infiltration. The key aim of this study is to investigate the impact of surface properties (wettability, roughness, heterogeneous mineral composition) on the dynamics of quasi-static fluid displacement process and capillary trapping efficiency in porous medium. We concluded that for homogeneous wet smooth glass beads surfaces, a transition in fluid displacement pattern occurs from a compact (for θ < 90°; imbibition process) to a fractal front-pattern (for θ > 90°; drainage process) leading to a crossover in capillary trapping efficiency from zero to maximum. The impact of surface roughness on capillary trapping efficiency was also studied, and an opposite trends in terms of wettability dependency was observed. Rough natural sands surfaces depicts a non-monotonous wettability dependency, i.e. a transition from maximal trapping (for θ < 90°) to no-trapping occurs (at θ = 90°), followed by an increase to medium trapping (for θ > 90°). For a fractional-wet media, the percolating cluster of hydrophobic sediments (connected hydrophobic pathways) characterize the fluid displacement pattern and trapping efficiency.

Page generated in 0.0443 seconds