• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discretization Error Estimation Using the Error Transport Equations for Computational Fluid Dynamics Simulations

Wang, Hongyu 11 June 2021 (has links)
Computational Fluid Dynamics (CFD) has been widely used as a tool to analyze physical phenomena involving fluids. To perform a CFD simulation, the governing equations are discretized to formulate a set of nonlinear algebraic equations. Typical spatial discretization schemes include finite-difference methods, finite-volume methods, and finite-element methods. Error introduced in the discretization process is called discretization error and defined as the difference between the exact solution to the discrete equations and the exact solution to the partial differential or integral equations. For most CFD simulations, discretization error accounts for the largest portion of the numerical error in the simulation. Discretization error has a complicated nonlinear relationship with the computational grid and the discretization scheme, which makes it especially difficult to estimate. Thus, it is important to study the discretization error to characterize numerical errors in a CFD simulation. Discretization error estimation is performed using the Error Transport Equations (ETE) in this work. The original nonlinear form of the ETE can be linearized to formulate the linearized ETE. Results of the two types of the ETE are compared. This work implements the ETE for finite-volume methods and Discontinuous Galerkin (DG) finite-element methods. For finite volume methods, discretization error estimates are obtained for both steady state problems and unsteady problems. The work on steady-state problems focuses on turbulent flow modelled by the Spalart-Allmaras (SA) model and Menter's $k-omega$ SST model. Higher-order discretization error estimates are obtained for both the mean variables and the turbulence working variables. The type of pseudo temporal discretization used for the steady-state problems does not have too much influence on the final converged solution. However, the temporal discretization scheme makes a significant difference for unsteady problems. Different temporal discretizations also impact the ETE implementation. This work discusses the implementation of the ETE for the 2-step Backward Difference Formula (BDF2) and the Singly Diagonally Implicit Runge-Kutta (SDIRK) methods. Most existing work on the ETE focuses on finite-volume methods. This work also extends ETE to work with the DG methods and tests the implementation with steady state inviscid test cases. The discretization error estimates for smooth test cases achieve the expected order of accuracy. When the test case is non-smooth, the truncation error estimation scheme fails to generate an accurate truncation error estimate. This causes a reduction of the discretization error estimate to first-order accuracy. Discussions are made on how accurate truncation error estimates can be found for non-smooth test cases. / Doctor of Philosophy / For a general practical fluid flow problem, the governing equations can not be solved analytically. Computational Fluid Dynamics (CFD) approximates the governing equations by a set of algebraic equations that can be solved directly by the computer. Compared to experiments, CFD has certain advantages. The cost for running a CFD simulation is typically much lower than performing an experiment. Changing the conditions and geometry is usually easier for a CFD simulation than for an experiment. A CFD simulation can obtain information of the entire flow field for all field variables, which is nearly impossible for a single experiment setup. However, numerical errors are inherently persistent in CFD simulations due to the approximations made in CFD and finite precision arithmetic of the computer. Without proper characterization of errors, the accuracy of the CFD simulation can not be guaranteed. Numerical errors can even result in false flow features in the CFD solution. Thus, numerical errors need to be carefully studied so that the CFD simulation can provide useful information for the chosen application. The focus of this work is on numerical error estimation for the finite-volume method and the Discontinuous Galerkin (DG) finite-element method. In general, discretization error makes the most significant contribution to the numerical error of a CFD simulation. This work estimates discretization error by solving a set of auxiliary equations derived for the discretization error of a CFD solution. Accurate discretization error estimates are obtained for different test cases. The work on the finite-volume method focus on discretization error estimation for steady state turbulent test cases and unsteady test cases. To the best of the author's knowledge, the implementation of the current discretization error estimation scheme has only been applied as an intermediate step for the error estimation of functionals for the DG method in the literature. Results for steady-state inviscid test cases for the DG method are presented.
2

Residual-based Discretization Error Estimation for Computational Fluid Dynamics

Phillips, Tyrone 30 October 2014 (has links)
The largest and most difficult numerical approximation error to estimate is discretization error. Residual-based discretization error estimation methods are a category of error estimators that use an estimate of the source of discretization error and information about the specific application to estimate the discretization error using only one grid level. The higher-order terms are truncated from the discretized equations and are the local source of discretization error. The accuracy of the resulting discretization error estimate depends solely on the accuracy of the estimated truncation error. Residual-based methods require only one grid level compared to the more commonly used Richardson extrapolation which requires at least two. Reducing the required number of grid levels reduces computational expense and, since only one grid level is required, can be applied to unstructured grids where multiple quality grid levels are difficult to produce. The two residual-based discretization error estimators of interest are defect correction and error transport equations. The focus of this work is the development, improvement, and evaluation of various truncation error estimation methods considering the accuracy of the truncation error estimate and the resulting discretization error estimates. The minimum requirements for accurate truncation error estimation is specified along with proper treatment for several boundary conditions. The methods are evaluated using various Euler and Navier-Stokes applications. The discretization error estimates are compared to Richardson extrapolation. The most accurate truncation error estimation method was found to be the k-exact method where the fine grid with a correction factor was considerably reliable. The single grid methods including the k-exact require that the continuous operator be modified at the boundary to be consistent with the implemented boundary conditions. Defect correction showed to be more accurate for areas of larger discretization error; however, the cost was substantial (although cheaper than the primal problem) compared to the cost of solving the ETEs which was essential free due to the linearization. Both methods showed significantly more accurate estimates compared to Richardson extrapolation especially for smooth problems. Reduced accuracy was apparent with the presence of stronger shocks and some possible modifications to adapt to singularies are proposed for future work. / Ph. D.
3

Application of Improved Truncation Error Estimation Techniques to Adjoint Based Error Estimation and Grid Adaptation

Derlaga, Joseph Michael 23 July 2015 (has links)
Numerical solutions obtained through the use of Computational Fluid Dynamics (CFD) are subject to discretization error, which is locally generated by truncation error. The discretization error is extremely difficult to properly estimate and this in turn leads to uncertainty over the quality of the numerical solutions obtained via CFD methods and the engineering functionals computed using these solutions. Adjoint error estimation techniques specifically seek to estimate the error in functionals, but are dependent upon accurate truncation error estimates. This work examines the application of new, single-grid, truncation error estimation procedures to the problem of adjoint error estimation for both the quasi-1D and 2D Euler equations. The new truncation error estimation techniques are based on local reconstructions of the computed solutions and comparisons are made for the quasi-1D study in order to determine the most appropriate solution variables to reconstruct as well as the most appropriate reconstruction method. In addition, comparisons are made between the single-grid truncation error estimates and methods based on uniformally refining or coarsening the underlying numerical mesh on which the computed solutions are obtained. A method based on an refined grid error estimate is shown to work well for a non-isentropic flow for the quasi-1D Euler equations, but all truncation error estimations methods ultimately result in over prediction of functional discretization error in the presence of a shock in 2D. Alternatives to adjoint methods, which can only estimate the error in a single functional for each adjoint solution obtained, are examined for the 2D Euler equations. The defection correction method and error transport equations are capable of locally improving the entire computed solution, allowing for error estimates in multiple functionals. It is found that all three functional discretization error estimates perform similarly for the same truncation error estimate, although the defect correction method is the most costly from a computational viewpoint. Comparisons are made between truncation error and adjoint weighted truncation error based adaptive indicators. For the quasi-1D Euler equations it is found that both methods are competitive, however the truncation error based method is cheaper as a separate adjoint solve is avoided. For the 2D Euler equations, the truncation error estimates on the adapted meshes suffer due to a lack of smooth grid transformations which are used in reconstructing the computed solutions. In order to complete this work, a new CFD code incorporating a variety of best practices from the field of Computer Science is developed as well as a new method of performing code verification using the method of manufactured solutions which is significantly easier to implement than traditional manufactured solution techniques. / Ph. D.

Page generated in 0.1525 seconds