• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An iPS-Based Approach to Study the Transcriptional and Epigenetic Consequences of X-Chromosome Aneuploidies

Alowaysi, Maryam 08 1900 (has links)
Klinefelter Syndrome (KS) is a multisystemic disorder associated with a plethora of phenotypic features including mental retardation, cardiac abnormalities, osteoporosis, infertility, gynecomastia, type two diabetes and increased cancer risk. KS is the most common aneuploidy in humans (with a prevalence of 1:500 to 1:1000 born males) and is characterized by one or more supernumerary X-chromosomes (47-XXY, 48-XXXY, and 49-XXXXY karyotypes). While X-chromosome inactivation (XCI) represses extra Xs, few genes called “escape genes” elude the XCI mechanism and are actively transcribed from X inactive. The overdosage of escape genes has been considered the molecular landscape that underlies KS clinical features. In this project, we exploit an integration-free reprogramming method to generate the largest described cohort of iPSCs from seven patients with KS and healthy donor fibroblasts from two relatives. The unicity of this cohort relies on the derivation of 47-XXY iPSCs and their isogenic 46-XY healthy counterparts, along with multiple rare 48-XXXY and 49-XXXXY iPSC lines. Through X chromosome inactivation (XCI) assessment, we show consistent retention of n-1 XCI in all derived KS-iPSCs. We identify the genes within the PAR1 region as the most susceptible to dosage-dependent transcriptional dysregulation and therefore putatively responsible for the progressively worsening phenotype in higher grade X aneuploidies. Moreover, we explore the transcriptional impact of X overdosage on autosomes and identify that the X-dosage-sensitive autosomal transcription factor NRF1 is a master regulator of the X-linked escape gene ZFX. Finally, we dissect the potential pathological impact of the escape gene KDM6A on low- and high-grade supernumerary X iPSCs and differentiated derivatives. We highlight a considerable proportion of KDM6A targets that could be responsible for paradigmatic clinical manifestations of KS.

Page generated in 0.0656 seconds