Spelling suggestions: "subject:"fenvalerate"" "subject:"isovalerate""
1 |
Biodegradação do pesticida esfenvalerato por fungos de ambiente marinho / Biodegradation of the pesticide esfenvalerate by marine-derived fungiBirolli, Willian Garcia 21 February 2014 (has links)
Desde a revolução verde, na década de 1950, o processo tradicional de produção agrícola passou por mudanças com a inserção do uso intensivo de agrotóxicos como os piretróides, que são a terceira classe química de pesticidas mais comercializada no mundo. Estes compostos geralmente são ésteres que contêm um anel dimetilciclopropano com grupamentos variáveis e a presença de anéis aromáticos. Cada vez mais os cientistas vêm explorando a diversidade microbiana na biodegradação de pesticidas e neste contexto, o emprego de fungos de ambiente marinho possui grande potencialidade devido ao seu sistema enzimático único com a presença de compostos altamente oxigenados e halogenados, assim como o esfenvalerato empregado neste trabalho. Entretanto, estes micro-organismos não têm sido explorados na biotransformação de pesticidas piretróides. Neste estudo foi avaliada a eficiência de fungos de ambiente marinho [Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. Dr(A)6, Acremonium sp. Dr(F)1, Westerdykella sp. Dr(M2)4 e Cladosporium sp. Dr(M2)2] na degradação do pesticida piretróide esfenvarelato. Observou-se que o esfenvalerato e seus principais metabólitos de degradação causam efeitos inibitórios significativos no crescimento dos fungos, mas não o suficiente para inviabilizar o estudo da biodegradação por meio destes micro-organismos. Os resultados obtidos sugerem que diversas espécies fúngicas contribuem para a biodegradação do pesticida esfenvalerato, entretanto a eficiência da degradação deste composto varia muito entre linhagens. Observou-se a degradação de 3 a 35% de 100 mg.L-1 de esfenvalerato presente na formulação comercial (SUMIDAN 150SC®) em 14 dias para diferentes fungos. Os metabólitos identificados [3-fenoxibenzaldeído, ácido 3-fenoxibenzoico, álcool 3-fenoxibenzílico e ácido 3-(hidroxifenoxi)benzoico] tornaram possível uma proposta de rota biodegradativa, onde se observou metabólitos cada vez mais polares, aumentando a possibilidade de carreamento para o meio aquoso. Constatou-se que em geral ocorre a formação de grandes quantidade do ácido 3-fenoxibenzoico e do ácido 2-(4-clorofenil)-3-metilbutanoico, compostos considerados tóxicos e que podem causar efeitos nocivos à saúde humana e ao meio ambiente. Para a linhagen Acremonium sp. Dr(F)1 que apresentou os melhores resultados de biodegradação, após 28 dias de cultivo com 100 mg.L-1 de esfenvalerato observou-se 20 mg.L-1 de acido 3-fenoxibenzoico, que posteriormente foi convertido ao ácido 3-(hidroxifenoxi)benzoico. Observou-se também uma biodegradação mais eficiente do princípio ativo esfenvalerato puro do que na formulação comercial, que pode ser causada por diversos fatores, como a toxicidade do xileno presente na formulação comercial ou a adsorção do esfenvarelato aos componentes da formulação emulsionável dificultando a ação enzimática. A partir destes resultados toma-se interessante o emprego destes micro-organismos visando a biorremediação deste pesticida. / Since the green revolution in the 1950s, the traditional agricultural production has undergone changes such as the intensive use of pesticides, including pyrethroids, which is the third most sold chemical class of pesticide. These compounds are generally esters containing a dimethylcyclopropane ring with different groups and aromatic rings. Scientists are exploring the microbial diversity for the biodegradation of pesticides. The use of marine fungi may show great potential to an efficient biodegradation, because of its unique enzymatic system and the presence of halogenated and oxygenated compounds, such as the pesticide esfenvalerate used in this work. However, these microorganisms have not been explored in the biotransformation of pyrethroid pesticides. In this study, marine-derived fungi [Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. Dr(A)6, Acremonium sp. Dr(F)1, Westerdykella sp. Dr(M2)4 and Cladosporium sp. Dr(M2)2] were applied in the biodegradation of the esfenvalerate. It was observed that the esfenvalerate and its degradation metabolites cause an inhibitory effect on the fungi growth, however not enough to make unfeasible the study of the biodegradation by these microorganisms. The results suggest that different fungal species contribute to the degradation of esfenvalerate, although the efficiency of degradation varies widely between strains. It was observed 3-35% of degradation at a concentration of 100 mg.l-1 of esfenvalerate present in the commercial formulation (SUMIDAN 15OSC®) in 14 days. The identified metabolites [3-phenoxybenzaldehyde, 3-phenoxybenzoic acid, 3- phenoxybenzyl alcohol and 3-(hydroxyphenoxy)benzoic acid ) enabled the proposal of a biodegradative pathway, in which was noted the increasingly polar character of metabolites, raising the possibility of entrainment for aqueous medium . It was observed, in general, the large formation of 3- phenoxybenzoic and 2-(4-chlorophenyl)-3-methylbutanoic acid, compounds that are considered toxic and may cause harmful effects to human health and the environment. For the strain Acremonium sp. Dr (F)1, which showed the best results of 100 mg.l-1 esfenvalerate biodegradation after 28 days, it was observed 20 mg.l-1 of 3-phenoxybenzoic acid, which was later converted to 3- (hydroxyphenoxy)benzoic acid. It was also observed a more efficient biodegradation of the pure active ingredient than the commercial formulation, what can be caused by various reasons, such as the toxicity of the xylene present in the commercial formulation or the esfenvarelate adsorption in the components of the emulsifiable formulation, difficulting the enzymatic activity. These results shows the potential use of these microorganisms in the bioremediation of esfenvalerate.
|
2 |
Biodegradação do pesticida esfenvalerato por fungos de ambiente marinho / Biodegradation of the pesticide esfenvalerate by marine-derived fungiWillian Garcia Birolli 21 February 2014 (has links)
Desde a revolução verde, na década de 1950, o processo tradicional de produção agrícola passou por mudanças com a inserção do uso intensivo de agrotóxicos como os piretróides, que são a terceira classe química de pesticidas mais comercializada no mundo. Estes compostos geralmente são ésteres que contêm um anel dimetilciclopropano com grupamentos variáveis e a presença de anéis aromáticos. Cada vez mais os cientistas vêm explorando a diversidade microbiana na biodegradação de pesticidas e neste contexto, o emprego de fungos de ambiente marinho possui grande potencialidade devido ao seu sistema enzimático único com a presença de compostos altamente oxigenados e halogenados, assim como o esfenvalerato empregado neste trabalho. Entretanto, estes micro-organismos não têm sido explorados na biotransformação de pesticidas piretróides. Neste estudo foi avaliada a eficiência de fungos de ambiente marinho [Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. Dr(A)6, Acremonium sp. Dr(F)1, Westerdykella sp. Dr(M2)4 e Cladosporium sp. Dr(M2)2] na degradação do pesticida piretróide esfenvarelato. Observou-se que o esfenvalerato e seus principais metabólitos de degradação causam efeitos inibitórios significativos no crescimento dos fungos, mas não o suficiente para inviabilizar o estudo da biodegradação por meio destes micro-organismos. Os resultados obtidos sugerem que diversas espécies fúngicas contribuem para a biodegradação do pesticida esfenvalerato, entretanto a eficiência da degradação deste composto varia muito entre linhagens. Observou-se a degradação de 3 a 35% de 100 mg.L-1 de esfenvalerato presente na formulação comercial (SUMIDAN 150SC®) em 14 dias para diferentes fungos. Os metabólitos identificados [3-fenoxibenzaldeído, ácido 3-fenoxibenzoico, álcool 3-fenoxibenzílico e ácido 3-(hidroxifenoxi)benzoico] tornaram possível uma proposta de rota biodegradativa, onde se observou metabólitos cada vez mais polares, aumentando a possibilidade de carreamento para o meio aquoso. Constatou-se que em geral ocorre a formação de grandes quantidade do ácido 3-fenoxibenzoico e do ácido 2-(4-clorofenil)-3-metilbutanoico, compostos considerados tóxicos e que podem causar efeitos nocivos à saúde humana e ao meio ambiente. Para a linhagen Acremonium sp. Dr(F)1 que apresentou os melhores resultados de biodegradação, após 28 dias de cultivo com 100 mg.L-1 de esfenvalerato observou-se 20 mg.L-1 de acido 3-fenoxibenzoico, que posteriormente foi convertido ao ácido 3-(hidroxifenoxi)benzoico. Observou-se também uma biodegradação mais eficiente do princípio ativo esfenvalerato puro do que na formulação comercial, que pode ser causada por diversos fatores, como a toxicidade do xileno presente na formulação comercial ou a adsorção do esfenvarelato aos componentes da formulação emulsionável dificultando a ação enzimática. A partir destes resultados toma-se interessante o emprego destes micro-organismos visando a biorremediação deste pesticida. / Since the green revolution in the 1950s, the traditional agricultural production has undergone changes such as the intensive use of pesticides, including pyrethroids, which is the third most sold chemical class of pesticide. These compounds are generally esters containing a dimethylcyclopropane ring with different groups and aromatic rings. Scientists are exploring the microbial diversity for the biodegradation of pesticides. The use of marine fungi may show great potential to an efficient biodegradation, because of its unique enzymatic system and the presence of halogenated and oxygenated compounds, such as the pesticide esfenvalerate used in this work. However, these microorganisms have not been explored in the biotransformation of pyrethroid pesticides. In this study, marine-derived fungi [Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. Dr(A)6, Acremonium sp. Dr(F)1, Westerdykella sp. Dr(M2)4 and Cladosporium sp. Dr(M2)2] were applied in the biodegradation of the esfenvalerate. It was observed that the esfenvalerate and its degradation metabolites cause an inhibitory effect on the fungi growth, however not enough to make unfeasible the study of the biodegradation by these microorganisms. The results suggest that different fungal species contribute to the degradation of esfenvalerate, although the efficiency of degradation varies widely between strains. It was observed 3-35% of degradation at a concentration of 100 mg.l-1 of esfenvalerate present in the commercial formulation (SUMIDAN 15OSC®) in 14 days. The identified metabolites [3-phenoxybenzaldehyde, 3-phenoxybenzoic acid, 3- phenoxybenzyl alcohol and 3-(hydroxyphenoxy)benzoic acid ) enabled the proposal of a biodegradative pathway, in which was noted the increasingly polar character of metabolites, raising the possibility of entrainment for aqueous medium . It was observed, in general, the large formation of 3- phenoxybenzoic and 2-(4-chlorophenyl)-3-methylbutanoic acid, compounds that are considered toxic and may cause harmful effects to human health and the environment. For the strain Acremonium sp. Dr (F)1, which showed the best results of 100 mg.l-1 esfenvalerate biodegradation after 28 days, it was observed 20 mg.l-1 of 3-phenoxybenzoic acid, which was later converted to 3- (hydroxyphenoxy)benzoic acid. It was also observed a more efficient biodegradation of the pure active ingredient than the commercial formulation, what can be caused by various reasons, such as the toxicity of the xylene present in the commercial formulation or the esfenvarelate adsorption in the components of the emulsifiable formulation, difficulting the enzymatic activity. These results shows the potential use of these microorganisms in the bioremediation of esfenvalerate.
|
3 |
Evaluation of image analysis for studing mite behaviourBowie, Mike H. January 1996 (has links)
The aim of this study was to investigate the usefulness of image analysis for studying mite behaviour. Image analysis was used to convert video recordings of mites' locomotory behaviour into a series of x,y coordinates that, when joined, closely resemble the paths of mites. The coordinates were also used to calculate walking speed, direction of travel, turning frequency, turn bias and tortuosity. Two experimental arenas were developed and used to study the movement of three mite species: 1) a leaf disc arena for two-spotted spider mite, Tetranychus urticae Koch and European red mite, Panonychus ulmi (Koch); and 2), a cover-slip/tack-trap arena for Typhlodromus pyri Scheuten. Two-spotted spider mite exhibited a change in locomotory behaviour through a 48 minute period. Mites exhibited a significant decline in distance travelled, whereas the mean stationary time (per four minute interval) more than doubled, and the duration of stationary events increased steadily over the same period. A reduction in sampling frequency of mite coordinates from one per second to one every two seconds and every four seconds produced a 5% and 12% 'loss' in path length respectively. Sample period length was shown to greatly influence the results produced for some of the mean parameters calculated, however, a reduction in sample length from 3000 to 1500 coordinates was not considered to cause a major loss in information. The influence of the inherent mite movement could not be ignored and made it difficult to make decisions on the 'best' sample length to use. Some strong correlations were found between parameters used to analyse mite locomotory behaviour. In particular, arithmetic mean vector length, speed, total stationary time and total distance travelled were significantly correlated with each other. Mean angular deviation and weighted mean vector length, which both measure the degree of clustering around the mean heading angle, were strongly negatively correlated. Parameters which differentiated between 'straight' and 'tortuous' mite movement were found to be mean meander, absolute mean turn and fractal dimensions. Mean meander was thought to be the most 'powerful', while coefficient of a straight line, a commonly used parameter for measuring tortuosity, did not significantly differentiate between the two different behaviours. Frequency distributions of turns and standard deviations of the three mite species were very similar. All three species had a slight bias to turning right (clockwise) rather than to the left (counter-clockwise) and for each species certain angles occurred more often than would be expected in a 'perfect' normal distribution. A similar pattern also occurred with the frequency distribution of two-spotted spider mite heading angles, in that angles which were expected to occur more often, did not, and vice versa. The potential to use saturated salt solutions to control relative humidity on the arena was` demonstrated and indicated that relative humidity is likely to have an important influence on mite behaviour. Two-spotted spider mites appeared to move more quickly in an attempt to escape the unfavourable, extreme (10% and 95% R.H. at 25°C) moisture conditions. All three mite species displayed a characteristic edge-walking behaviour around the arenas. However, when 'edge' and 'non-edge' behaviours were compared, mean meander was the only parameter (of the parameters tested) which gave a significant difference. Behavioural responses of European red mite and T. pyri to sub-lethal (field rate) esfenvalerate were investigated and the results indicated that these mites did not seek the unsprayed halves of the arenas during the first 48 minutes. However, significant differences in most behavioural parameters to esfenvalerate residues were found with European red mite when whole arenas were compared. Image analysis is an extremely useful research tool for studying mite behaviour because of its ability to measure many parameters quickly. Careful choice of the environmental conditions, the sampling framework, and interpretation of data is essential for meaningful results.
|
4 |
Evaluation of image analysis for studing mite behaviourBowie, Mike H. January 1996 (has links)
The aim of this study was to investigate the usefulness of image analysis for studying mite behaviour. Image analysis was used to convert video recordings of mites' locomotory behaviour into a series of x,y coordinates that, when joined, closely resemble the paths of mites. The coordinates were also used to calculate walking speed, direction of travel, turning frequency, turn bias and tortuosity. Two experimental arenas were developed and used to study the movement of three mite species: 1) a leaf disc arena for two-spotted spider mite, Tetranychus urticae Koch and European red mite, Panonychus ulmi (Koch); and 2), a cover-slip/tack-trap arena for Typhlodromus pyri Scheuten. Two-spotted spider mite exhibited a change in locomotory behaviour through a 48 minute period. Mites exhibited a significant decline in distance travelled, whereas the mean stationary time (per four minute interval) more than doubled, and the duration of stationary events increased steadily over the same period. A reduction in sampling frequency of mite coordinates from one per second to one every two seconds and every four seconds produced a 5% and 12% 'loss' in path length respectively. Sample period length was shown to greatly influence the results produced for some of the mean parameters calculated, however, a reduction in sample length from 3000 to 1500 coordinates was not considered to cause a major loss in information. The influence of the inherent mite movement could not be ignored and made it difficult to make decisions on the 'best' sample length to use. Some strong correlations were found between parameters used to analyse mite locomotory behaviour. In particular, arithmetic mean vector length, speed, total stationary time and total distance travelled were significantly correlated with each other. Mean angular deviation and weighted mean vector length, which both measure the degree of clustering around the mean heading angle, were strongly negatively correlated. Parameters which differentiated between 'straight' and 'tortuous' mite movement were found to be mean meander, absolute mean turn and fractal dimensions. Mean meander was thought to be the most 'powerful', while coefficient of a straight line, a commonly used parameter for measuring tortuosity, did not significantly differentiate between the two different behaviours. Frequency distributions of turns and standard deviations of the three mite species were very similar. All three species had a slight bias to turning right (clockwise) rather than to the left (counter-clockwise) and for each species certain angles occurred more often than would be expected in a 'perfect' normal distribution. A similar pattern also occurred with the frequency distribution of two-spotted spider mite heading angles, in that angles which were expected to occur more often, did not, and vice versa. The potential to use saturated salt solutions to control relative humidity on the arena was` demonstrated and indicated that relative humidity is likely to have an important influence on mite behaviour. Two-spotted spider mites appeared to move more quickly in an attempt to escape the unfavourable, extreme (10% and 95% R.H. at 25°C) moisture conditions. All three mite species displayed a characteristic edge-walking behaviour around the arenas. However, when 'edge' and 'non-edge' behaviours were compared, mean meander was the only parameter (of the parameters tested) which gave a significant difference. Behavioural responses of European red mite and T. pyri to sub-lethal (field rate) esfenvalerate were investigated and the results indicated that these mites did not seek the unsprayed halves of the arenas during the first 48 minutes. However, significant differences in most behavioural parameters to esfenvalerate residues were found with European red mite when whole arenas were compared. Image analysis is an extremely useful research tool for studying mite behaviour because of its ability to measure many parameters quickly. Careful choice of the environmental conditions, the sampling framework, and interpretation of data is essential for meaningful results.
|
Page generated in 0.0457 seconds