• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le polytope des sous-espaces d'un espace affin fini / The polytope of subspaces of a finite affine space

Christophe, Julie 29 September 2006 (has links)
Le polytope des m-sous-espaces est défini comme l'enveloppe convexe des vecteurs caractéristiques de tous les sous-espaces de dimension m d'un espace affin fini. Le cas particulier du polytope des hyperplans a été étudié par Maurras (1993) et Anglada et Maurras (2003), qui ont obtenu une description complète des facettes. Le polytope général des m-sous-espaces que nous considérons possède une structure plus complexe, notamment concernant les facettes. Néanmoins, nous établissons dans cette thèse plusieurs familles de facettes. Nous caractérisons également complètement le groupe des automorphismes du polytope ainsi que l'adjacence des sommets du polytope des m-sous-espaces. Un tangle est un ensemble d'hyperplans d'un espace affin contenant un hyperplan par classe d'hyperplans parallèles. Anglada et Maurras ont montré que les tangles définissent des facettes du polytope des hyperplans et que toutes les facettes de ce polytope proviennent de tangles. Nous tentons d'établir une généralisation de ce résultat. Nous élaborons une classification des tangles en familles pour de petites dimensions d'espaces affins.
2

Le polytope des sous-espaces d'un espace affin fini / Polytope of subspaces of a finite affine space

Christophe, Jean 29 September 2006 (has links)
Le polytope des m-sous-espaces est défini comme l'enveloppe convexe des vecteurs caractéristiques de tous les sous-espaces de dimension m d'un espace affin fini. Le cas particulier du polytope des hyperplans a été étudié par Maurras (1993) et Anglada et Maurras (2003), qui ont obtenu une description complète des facettes. Le polytope général des m-sous-espaces que nous considérons possède une structure plus complexe, notamment concernant les facettes. Néanmoins, nous établissons dans cette thèse plusieurs familles de facettes. Nous caractérisons également complètement le groupe des automorphismes du polytope ainsi que l'adjacence des sommets du polytope des m-sous-espaces. Un tangle est un ensemble d'hyperplans d'un espace affin contenant un hyperplan par classe d'hyperplans parallèles. Anglada et Maurras ont montré que les tangles définissent des facettes du polytope des hyperplans et que toutes les facettes de ce polytope proviennent de tangles. Nous tentons d'établir une généralisation de ce résultat. Nous élaborons une classification des tangles en familles pour de petites dimensions d'espaces affins. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished

Page generated in 0.0568 seconds