• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variétés de Gray et géométries spéciales en dimension 6

Butruille, Jean-Baptiste 04 October 2005 (has links) (PDF)
On étudie des variétés presque hermitiennes de dimension 6 qui admettent une réduction supplémentaire à SU(3), induite par la partie de type (3,0) de la différentielle de la forme de Kähler dω. On se sert du fait constaté par Hitchin qu'une 2-forme ω et une 3-forme ψ, d'un certain type algébrique, sont suffisantes pour définir une structure SU(3) sur une variété de dimension 6, ainsi que du fait démontré par Chiossi, Salamon que les différentielles de ω, ψ mais aussi de φ, le dual de Hodge de ψ, déterminent le 1-jet de cette structure SU(3) en tout point. L'exemple privilégié de cette situation, où la réduction est globale, est celui des variétés « nearly Kähler » non kähleriennes en dimension 6, appelées par nous variétés de Gray. On classifie les variétés de Gray homogènes ce qui permet de résoudre une ancienne conjecture de Gray et Wolf : toutes les variétés strictement « nearly Kähler » homogènes sont des espaces 3-symétriques. Un autre résultat concerne une sous-variété naturelle de l'espace de twisteurs d'une variété presque hermitienne. Cet « espace de twisteurs réduit » est muni d'une structure presque complexe naturelle qu'on montre n'être intégrable que si la variété est localement conforme à une variété kählerienne, Bochner-plate ou à la sphère S6. En passant, on montre que les variétés de type W1+W4 dans la classification de Gray, Hervella (où W1 est la classe des variétés « nearly-Kähler » et W4 la classe des variétés localement conformément kähleriennes) sont localement conformes à des variétés nearly-Kähler, en dimension 6.

Page generated in 0.0389 seconds