Spelling suggestions: "subject:"estimação nãoparamétrica"" "subject:"estimação nãoparamétrico""
1 |
Estimação de cópulas via ondaletas / Copula estimation through waveletsSilva, Francyelle de Lima e 03 October 2014 (has links)
Cópulas tem se tornado uma importante ferramenta para descrever e analisar a estrutura de dependência entre variáveis aleatórias e processos estocásticos. Recentemente, surgiram alguns métodos de estimação não paramétricos, utilizando kernels e ondaletas. Neste contexto, sabendo que cópulas podem ser escritas como expansão em ondaletas, foi proposto um estimador não paramétrico via ondaletas para a função cópula para dados independentes e de séries temporais, considerando processos alfa-mixing. Este estimador tem como característica principal estimar diretamente a função cópula, sem fazer suposição alguma sobre a distribuição dos dados e sem ajustes prévios de modelos ARMA - GARCH, como é feito em ajuste paramétrico para cópulas. Foram calculadas taxas de convergência para o estimador proposto em ambos os casos, mostrando sua consistência. Foram feitos também alguns estudos de simulação, além de aplicações a dados reais. / Copulas are important tools for describing the dependence structure between random variables and stochastic processes. Recently some nonparametric estimation procedures have appeared, using kernels and wavelets. In this context, knowing that a copula function can be expanded in a wavelet basis, we have proposed a nonparametric copula estimation procedure through wavelets for independent data and times series under alpha-mixing condition. The main feature of this estimator is the copula function estimation without assumptions about the data distribution and without ARMA - GARCH modeling, like in parametric copula estimation. Convergence rates for the estimator were computed, showing the estimator consistency. Some simulation studies were made, as well as analysis of real data sets.
|
2 |
Medidas de dependência local para séries temporais / Local dependence measures for time seriesLatif, Sumaia Abdel 25 February 2008 (has links)
Diferente das medidas de associação global (coeficiente de correlação linear de Pearson, de Spearman, tau de Kendall, por exemplo), as medidas de dependência local descrevem o comportamento da dependência localmente em diferentes regiões. Nesta tese, as medidas de dependência local para variáveis aleatórias propostas por Bairamov et al. (2003), Bjerve e Doksum (1993) e Sibuya (1960), são estudadas sob o enfoque de processos estocásticos estacionários bivariados e univariados, neste caso, estudando o comportamento da dependência local ao longo das defasagens da série temporal. Para as duas primeiras medidas, discutimos as suas propriedades, e estudamos os seus estimadores, além da consistência dos mesmos. Para a medida de Sibuya, além de discutir suas propriedades, propomos três estimadores para variáveis aleatórias e dois para séries temporais, verificando a consistência dos mesmos. O comportamento das três medidas locais e dos seus estimadores foram avaliados através de simulações e aplicações a dados reais (neste caso, fizemos uma comparação destas com cópula e densidade cópula). / Unlike global association measures (Pearson´s linear correlation coefficient, Spearman´s rho, Kendall´s tau, for example), local dependence measures describe the behaviour of dependence locally in different regions. In this thesis, the local dependence measures for random variables proposed by Bairamov et al. (2003), Bjerve and Doksum (1993) and Sibuya (1960), are studied in the context of bivariate and univariate stationary stochastic processes, in this case, evaluating the performance of local dependence along time lags. We discussed the properties and studied the estimators and consistence of the first two measures. As for the Sibuya measure, in addition to discussing its properties, we propose three estimators for random variables and two for time series while checking their consistence. The behaviour of the three local measures and their respective estimators was evaluated by simulations and application to real data (in this case, a comparison was drawn with copula and copula density).
|
3 |
Medidas de dependência local para séries temporais / Local dependence measures for time seriesSumaia Abdel Latif 25 February 2008 (has links)
Diferente das medidas de associação global (coeficiente de correlação linear de Pearson, de Spearman, tau de Kendall, por exemplo), as medidas de dependência local descrevem o comportamento da dependência localmente em diferentes regiões. Nesta tese, as medidas de dependência local para variáveis aleatórias propostas por Bairamov et al. (2003), Bjerve e Doksum (1993) e Sibuya (1960), são estudadas sob o enfoque de processos estocásticos estacionários bivariados e univariados, neste caso, estudando o comportamento da dependência local ao longo das defasagens da série temporal. Para as duas primeiras medidas, discutimos as suas propriedades, e estudamos os seus estimadores, além da consistência dos mesmos. Para a medida de Sibuya, além de discutir suas propriedades, propomos três estimadores para variáveis aleatórias e dois para séries temporais, verificando a consistência dos mesmos. O comportamento das três medidas locais e dos seus estimadores foram avaliados através de simulações e aplicações a dados reais (neste caso, fizemos uma comparação destas com cópula e densidade cópula). / Unlike global association measures (Pearson´s linear correlation coefficient, Spearman´s rho, Kendall´s tau, for example), local dependence measures describe the behaviour of dependence locally in different regions. In this thesis, the local dependence measures for random variables proposed by Bairamov et al. (2003), Bjerve and Doksum (1993) and Sibuya (1960), are studied in the context of bivariate and univariate stationary stochastic processes, in this case, evaluating the performance of local dependence along time lags. We discussed the properties and studied the estimators and consistence of the first two measures. As for the Sibuya measure, in addition to discussing its properties, we propose three estimators for random variables and two for time series while checking their consistence. The behaviour of the three local measures and their respective estimators was evaluated by simulations and application to real data (in this case, a comparison was drawn with copula and copula density).
|
4 |
Estimação de cópulas via ondaletas / Copula estimation through waveletsFrancyelle de Lima e Silva 03 October 2014 (has links)
Cópulas tem se tornado uma importante ferramenta para descrever e analisar a estrutura de dependência entre variáveis aleatórias e processos estocásticos. Recentemente, surgiram alguns métodos de estimação não paramétricos, utilizando kernels e ondaletas. Neste contexto, sabendo que cópulas podem ser escritas como expansão em ondaletas, foi proposto um estimador não paramétrico via ondaletas para a função cópula para dados independentes e de séries temporais, considerando processos alfa-mixing. Este estimador tem como característica principal estimar diretamente a função cópula, sem fazer suposição alguma sobre a distribuição dos dados e sem ajustes prévios de modelos ARMA - GARCH, como é feito em ajuste paramétrico para cópulas. Foram calculadas taxas de convergência para o estimador proposto em ambos os casos, mostrando sua consistência. Foram feitos também alguns estudos de simulação, além de aplicações a dados reais. / Copulas are important tools for describing the dependence structure between random variables and stochastic processes. Recently some nonparametric estimation procedures have appeared, using kernels and wavelets. In this context, knowing that a copula function can be expanded in a wavelet basis, we have proposed a nonparametric copula estimation procedure through wavelets for independent data and times series under alpha-mixing condition. The main feature of this estimator is the copula function estimation without assumptions about the data distribution and without ARMA - GARCH modeling, like in parametric copula estimation. Convergence rates for the estimator were computed, showing the estimator consistency. Some simulation studies were made, as well as analysis of real data sets.
|
5 |
Redução de ruído em sinais de voz usando curvas especializadas de modificação dos coeficientes da transformada em co-seno. / Speech denoising by softsoft thresholding.Antunes Júnior, Irineu 24 April 2006 (has links)
Muitos métodos de redução de ruído se baseiam na possibilidade de representar o sinal original com um reduzido número de coeficientes de uma transformada, ou melhor, obtém-se um sinal com menos ruído pelo cancelamento dos coeficientes abaixo de um valor adequadamente estabelecido de magnitude. Deve-se supor que a contribuição do ruído se distribua de maneira uniforme por todos os coeficientes. Uma desvantagem destes métodos, quando aplicados a sinais de voz, é a distorção introduzida pela eliminação dos coeficientes de pequena magnitude, juntamente com a presença de sinais espúrios, como o ruído musical" produzido por coeficientes ruidosos isolados que eventualmente ultrapassam o limiar. Para as transformadas usualmente empregadas, o histograma da distribuição dos coeficientes do sinal de voz possui um grande número de coeficientes próximos à origem. Diante disto, propomos uma nova função de thresholding" concebida especialmente para redução de ruído em sinais de voz adicionados a AWGN (Additive, White, and Gaussian Noise"). Esta função, chamada de SoftSoft, depende de dois valores de limiar: um nível inferior, ajustado para reduzir a distorção da voz, e um nível superior, ajustado para eliminar ruído. Os valores ótimos de limiar são calculados para minimizar uma estimativa do erro quadrático médio (MSE): diretamente, supondo conhecido o sinal original; indiretamente, usando uma função de interpolação para o MSE, levando a um método prático. A função SoftSoft alcança um MSE inferior ao que se obtém pelo emprego das conhecidas operações de Soft" ou Hard-thresholding", as quais dispõem apenas do limiar superior. Ainda que a melhoria em termos de MSE não seja muito expressiva, a melhoria da qualidade perceptual foi certificada tanto por um ouvinte quanto por uma medida perceptual de distorção (a distância log-espectral). / Many noise-reduction methods are based on the possibility of representing the clean signal as a reduced number of coefficients of a block transform, so that cancelling coefficients below a certain thresholding level will produce an enhanced reconstructed signal. It is necessary to assume that the clean signal has a sparse representation, while the noise energy is spread over all coefficients. The main drawback of those methods is the speech distortion introduced by eliminating small magnitude coefficients, and the presence of artifacts (musical noise") produced by isolated noisy coefficients randomly crossing the thresholding level. Based on the observation that the speech coefficient histogram has many important coefficients close to origin, we propose a custom thresholding function to perform noise reduction in speech signals corrupted by AWGN. This function, called SoftSoft, has two thresholding levels: a lower level adjusted to reduce speech distortion, and a higher level adjusted to remove noise. The joint optimal values can be determined by minimizing the resulting mean square error (MSE). We also verify that this new thresholding function leads to a lower MSE than the well-known Soft and Hard-thresholding functions, which employ only a higher thresholding level. Although the improvement in terms of MSE is not expressive, a perceptual distortion measure (the log-spectral distance, LSD) is employed to prove the higher performance of the proposed thresholding scheme.
|
6 |
Redução de ruído em sinais de voz usando curvas especializadas de modificação dos coeficientes da transformada em co-seno. / Speech denoising by softsoft thresholding.Irineu Antunes Júnior 24 April 2006 (has links)
Muitos métodos de redução de ruído se baseiam na possibilidade de representar o sinal original com um reduzido número de coeficientes de uma transformada, ou melhor, obtém-se um sinal com menos ruído pelo cancelamento dos coeficientes abaixo de um valor adequadamente estabelecido de magnitude. Deve-se supor que a contribuição do ruído se distribua de maneira uniforme por todos os coeficientes. Uma desvantagem destes métodos, quando aplicados a sinais de voz, é a distorção introduzida pela eliminação dos coeficientes de pequena magnitude, juntamente com a presença de sinais espúrios, como o ruído musical produzido por coeficientes ruidosos isolados que eventualmente ultrapassam o limiar. Para as transformadas usualmente empregadas, o histograma da distribuição dos coeficientes do sinal de voz possui um grande número de coeficientes próximos à origem. Diante disto, propomos uma nova função de thresholding concebida especialmente para redução de ruído em sinais de voz adicionados a AWGN (Additive, White, and Gaussian Noise). Esta função, chamada de SoftSoft, depende de dois valores de limiar: um nível inferior, ajustado para reduzir a distorção da voz, e um nível superior, ajustado para eliminar ruído. Os valores ótimos de limiar são calculados para minimizar uma estimativa do erro quadrático médio (MSE): diretamente, supondo conhecido o sinal original; indiretamente, usando uma função de interpolação para o MSE, levando a um método prático. A função SoftSoft alcança um MSE inferior ao que se obtém pelo emprego das conhecidas operações de Soft ou Hard-thresholding, as quais dispõem apenas do limiar superior. Ainda que a melhoria em termos de MSE não seja muito expressiva, a melhoria da qualidade perceptual foi certificada tanto por um ouvinte quanto por uma medida perceptual de distorção (a distância log-espectral). / Many noise-reduction methods are based on the possibility of representing the clean signal as a reduced number of coefficients of a block transform, so that cancelling coefficients below a certain thresholding level will produce an enhanced reconstructed signal. It is necessary to assume that the clean signal has a sparse representation, while the noise energy is spread over all coefficients. The main drawback of those methods is the speech distortion introduced by eliminating small magnitude coefficients, and the presence of artifacts (musical noise) produced by isolated noisy coefficients randomly crossing the thresholding level. Based on the observation that the speech coefficient histogram has many important coefficients close to origin, we propose a custom thresholding function to perform noise reduction in speech signals corrupted by AWGN. This function, called SoftSoft, has two thresholding levels: a lower level adjusted to reduce speech distortion, and a higher level adjusted to remove noise. The joint optimal values can be determined by minimizing the resulting mean square error (MSE). We also verify that this new thresholding function leads to a lower MSE than the well-known Soft and Hard-thresholding functions, which employ only a higher thresholding level. Although the improvement in terms of MSE is not expressive, a perceptual distortion measure (the log-spectral distance, LSD) is employed to prove the higher performance of the proposed thresholding scheme.
|
7 |
Distribuição empírica dos autovalores associados à matriz de interação dos modelos AMMI pelo método bootstrap não-paramétrico / Empirical distribution of eigenvalues associated with the interaction matrix of the AMMI models for non-parametric bootstrap methodHongyu, Kuang 25 January 2012 (has links)
A interação genótipos ambientes (G E) foi definido por Shelbourne (1972) como sendo a variação entre genótipos em resposta a diferentes condições ambientais. Sua magnitude na expressão fenotípica do caráter pode reduzir a correlação entre fenótipo e genótipo, in acionando a variância genética e, por sua vez, parâmetros dependentes desta, como herdabilidade e ganho genético com a seleção. Estudos sobre a adaptabilidade e a estabilidade fenotípica permitem particularizar os efeitos da interação GE ao nível de genótipo e ambiente, identificando a contribuição relativa de cada um para a interação total. Varias metodologias estatísticas têm sido propostas para a interpretação da interação G E proveniente de um grupo de cultivares testados em vários ambientes. Entre essas metodologias destaca-se os modelos AMMI (Additive Main Eects and Multiplicative Interaction Model), que vem ganhando grande aplicabilidade nos últimos anos. O modelo AMMI e um método uni-multivariado, que engloba uma analise de variância para os efeitos principais, que são os efeitos dos genótipos (G) e os ambientes (E) e para os efeitos multiplicativos (interação genótipo ambiente), para a qual utiliza-se a decomposição em valor singular (DVS). Essa técnica multivariada baseia-se no uso dos autovalores e autovetores provenientes da matriz de interação G E. Araujo e Dias (2005) verificaram o problema de superestimação e subestimação de autovalores estimados da maneira convencional. Efron(1979) propôs uma técnica de simulação numérica chamada Bootstrap para avaliar tais incertezas. O método Bootstrap consiste em uma técnica de reamostragem que permite aproximar a distribuição de uma função das observações a partir da distribuição empírica dos dados. Por meio desse método, podem ser estimados o erro-padrão da referida estimativa e os intervalos de confiança, com o intuito de fazer inferência sobre os parâmetros em questão. O objetivo deste trabalho será estudar o efeito da interação G E, avaliar a adaptabilidade e estabilidade de genótipos em diferentes ambientes através do modelo AMMI, com as analises através dos gráficos Biplot, encontrar a distribuição empírica dos autovalores e calcular o intervalo de confiança através o método Bootstrap não-paramétrico. Com o estudo da distribuição empírica dos autovalores poder-se-a validar os testes de hipóteses propostos na literatura para identificar o numero de IPCA (Incremental Principal Component Analysis) para seleção dos modelos AMMI, e propor um teste para seleção dos modelos. / The genotype environment interaction (G E) was dened by Shelbourne (1972) as the variation among genotypes in response to dierent environmental conditions. Its magnitude in phenotypic expression of the character can reduce the correlation between genotype and phenotype, in ating the genetic variance and, in turn, dependent on the parameters, as heritability and genetic gain with selection. Studies on the phenotypic adaptability and stability allow particularize the eects of interaction G E at the level of genotype and environment, identifying the relative contribution of each to the total interaction. There are several methods of analysis and interpretation for the genotype environment interaction from a group of genotype tested in several environments. These methods include AMMI models (Additive Main Eects and Multiplicative Interaction Model), coming gaining great applicability past years. The AMMI model is a uni-multivariate method, that includes an analysis of variance for the main eects (the eects of the genotypes (G) and environments (E)) and assumes multiplicative eects for the genotype environment interaction, using a singular value decomposition (DVS). This method estimates the eigenvalues and eigenvectors deriving from the matrix of genotype environment interaction. Araujo and Dias (2005) found an overestimation and underestimation problem with the eigenvalues in the conventional way. Efron (1979) proposed a numerical resampling technique called Bootstrap for evaluate such uncertainties. The bootstrap method consists of a resampling technique that allows to approximate the distribution of a function of the observations from the empirical distribution of the data. Through this method, can be estimated by the standard error of that estimate and condence intervals, in order to make inferences about the parameters in question. The aim of this work was to study the eect of genotype environment interection (GE), evaluate the adaptability and stability of genotypes in dierent environments through the AMMI model, with the analysis through the Biplot graphs, nd the empirical distribution of eigenvalues and calculate the condence interval using the nonparametric bootstrap, the study of the empirical distribution of eigenvalues serve to validate the hypothesis tests proposed in the literature to identify the number of IPCA (Incremental Principal Component Analysis) for selecting the AMMI model, and propose a test for selection of models.
|
8 |
Distribuição empírica dos autovalores associados à matriz de interação dos modelos AMMI pelo método bootstrap não-paramétrico / Empirical distribution of eigenvalues associated with the interaction matrix of the AMMI models for non-parametric bootstrap methodKuang Hongyu 25 January 2012 (has links)
A interação genótipos ambientes (G E) foi definido por Shelbourne (1972) como sendo a variação entre genótipos em resposta a diferentes condições ambientais. Sua magnitude na expressão fenotípica do caráter pode reduzir a correlação entre fenótipo e genótipo, in acionando a variância genética e, por sua vez, parâmetros dependentes desta, como herdabilidade e ganho genético com a seleção. Estudos sobre a adaptabilidade e a estabilidade fenotípica permitem particularizar os efeitos da interação GE ao nível de genótipo e ambiente, identificando a contribuição relativa de cada um para a interação total. Varias metodologias estatísticas têm sido propostas para a interpretação da interação G E proveniente de um grupo de cultivares testados em vários ambientes. Entre essas metodologias destaca-se os modelos AMMI (Additive Main Eects and Multiplicative Interaction Model), que vem ganhando grande aplicabilidade nos últimos anos. O modelo AMMI e um método uni-multivariado, que engloba uma analise de variância para os efeitos principais, que são os efeitos dos genótipos (G) e os ambientes (E) e para os efeitos multiplicativos (interação genótipo ambiente), para a qual utiliza-se a decomposição em valor singular (DVS). Essa técnica multivariada baseia-se no uso dos autovalores e autovetores provenientes da matriz de interação G E. Araujo e Dias (2005) verificaram o problema de superestimação e subestimação de autovalores estimados da maneira convencional. Efron(1979) propôs uma técnica de simulação numérica chamada Bootstrap para avaliar tais incertezas. O método Bootstrap consiste em uma técnica de reamostragem que permite aproximar a distribuição de uma função das observações a partir da distribuição empírica dos dados. Por meio desse método, podem ser estimados o erro-padrão da referida estimativa e os intervalos de confiança, com o intuito de fazer inferência sobre os parâmetros em questão. O objetivo deste trabalho será estudar o efeito da interação G E, avaliar a adaptabilidade e estabilidade de genótipos em diferentes ambientes através do modelo AMMI, com as analises através dos gráficos Biplot, encontrar a distribuição empírica dos autovalores e calcular o intervalo de confiança através o método Bootstrap não-paramétrico. Com o estudo da distribuição empírica dos autovalores poder-se-a validar os testes de hipóteses propostos na literatura para identificar o numero de IPCA (Incremental Principal Component Analysis) para seleção dos modelos AMMI, e propor um teste para seleção dos modelos. / The genotype environment interaction (G E) was dened by Shelbourne (1972) as the variation among genotypes in response to dierent environmental conditions. Its magnitude in phenotypic expression of the character can reduce the correlation between genotype and phenotype, in ating the genetic variance and, in turn, dependent on the parameters, as heritability and genetic gain with selection. Studies on the phenotypic adaptability and stability allow particularize the eects of interaction G E at the level of genotype and environment, identifying the relative contribution of each to the total interaction. There are several methods of analysis and interpretation for the genotype environment interaction from a group of genotype tested in several environments. These methods include AMMI models (Additive Main Eects and Multiplicative Interaction Model), coming gaining great applicability past years. The AMMI model is a uni-multivariate method, that includes an analysis of variance for the main eects (the eects of the genotypes (G) and environments (E)) and assumes multiplicative eects for the genotype environment interaction, using a singular value decomposition (DVS). This method estimates the eigenvalues and eigenvectors deriving from the matrix of genotype environment interaction. Araujo and Dias (2005) found an overestimation and underestimation problem with the eigenvalues in the conventional way. Efron (1979) proposed a numerical resampling technique called Bootstrap for evaluate such uncertainties. The bootstrap method consists of a resampling technique that allows to approximate the distribution of a function of the observations from the empirical distribution of the data. Through this method, can be estimated by the standard error of that estimate and condence intervals, in order to make inferences about the parameters in question. The aim of this work was to study the eect of genotype environment interection (GE), evaluate the adaptability and stability of genotypes in dierent environments through the AMMI model, with the analysis through the Biplot graphs, nd the empirical distribution of eigenvalues and calculate the condence interval using the nonparametric bootstrap, the study of the empirical distribution of eigenvalues serve to validate the hypothesis tests proposed in the literature to identify the number of IPCA (Incremental Principal Component Analysis) for selecting the AMMI model, and propose a test for selection of models.
|
9 |
Modelagem não-paramétrica da dinâmica da taxa de juros instantânea utilizando contratos futuros da taxa média dos depósitos interfinanceiros de 1 dia (DI1)Diaz, José Ignacio Valencia 26 August 2013 (has links)
Submitted by José Ignacio Valencia Díaz (jivalenciadiaz@gmail.com) on 2013-09-17T00:13:33Z
No. of bitstreams: 1
Dissertacao MPFE Jose Ignacio Valencia Diaz.pdf: 1741345 bytes, checksum: b45af943bf4f6e8a2a9963c07038d9dc (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2013-09-17T12:05:59Z (GMT) No. of bitstreams: 1
Dissertacao MPFE Jose Ignacio Valencia Diaz.pdf: 1741345 bytes, checksum: b45af943bf4f6e8a2a9963c07038d9dc (MD5) / Made available in DSpace on 2013-09-17T12:54:35Z (GMT). No. of bitstreams: 1
Dissertacao MPFE Jose Ignacio Valencia Diaz.pdf: 1741345 bytes, checksum: b45af943bf4f6e8a2a9963c07038d9dc (MD5)
Previous issue date: 2013-08-26 / Prediction models based on nonparametric estimation are in continuous development and have been permeating the quantitative community. Their main feature is that they do not consider as known a priori the form of the probability distributions functions (PDF), but allow the data to be used directly in order to build their own PDFs. In this work it is implemented the nonparametric pooled estimators from Sam and Jiang (2009) for drift and diffusion functions for the short rate diffusion process, by means of the use of yield series of different maturities provided by One Day Future Interbank Deposit contracts (ID1). The estimators are built from the perspective of kernel functions and they are optimized with a particular kernel format, in our case, Epanechnikov’s kernel, and with a smoothing parameter (bandwidth). Empiric experience indicates that the smoothing parameter is critical to find the probability density function that provides an optimal estimation in terms of MISE (Mean Integrated Squared Error) when testing the model with the traditional k-folds cross-validation method. Exceptions arise when the series do not have appropriate sizes, but the structural break of the diffusion process of the Brazilian interest short rate, since 2006, requires the reduction of the length of the series to the cost of reducing the predictive power of the model. This structural break represents the evolution of the Brazilian market, in an attempt to converge towards mature markets and it explains largely the unsatisfactory performance of the proposed estimator. / Modelos de predição baseados em estimações não-paramétricas continuam em desenvolvimento e têm permeado a comunidade quantitativa. Sua principal característica é que não consideram a priori distribuições de probabilidade conhecidas, mas permitem que os dados passados sirvam de base para a construção das próprias distribuições. Implementamos para o mercado brasileiro os estimadores agrupados não-paramétricos de Sam e Jiang (2009) para as funções de drift e de difusão do processo estocástico da taxa de juros instantânea, por meio do uso de séries de taxas de juros de diferentes maturidades fornecidas pelos contratos futuros de depósitos interfinanceiros de um dia (DI1). Os estimadores foram construídos sob a perspectiva da estimação por núcleos (kernels), que requer para a sua otimização um formato específico da função-núcleo. Neste trabalho, foi usado o núcleo de Epanechnikov, e um parâmetro de suavizamento (largura de banda), o qual é fundamental para encontrar a função de densidade de probabilidade ótima que forneça a estimação mais eficiente em termos do MISE (Mean Integrated Squared Error - Erro Quadrado Integrado Médio) no momento de testar o modelo com o tradicional método de validação cruzada de k-dobras. Ressalvas são feitas quando as séries não possuem os tamanhos adequados, mas a quebra estrutural do processo de difusão da taxa de juros brasileira, a partir do ano 2006, obriga à redução do tamanho das séries ao custo de reduzir o poder preditivo do modelo. A quebra estrutural representa um processo de amadurecimento do mercado brasileiro que provoca em grande medida o desempenho insatisfatório do estimador proposto.
|
Page generated in 0.1003 seconds