• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grandes déviations pour les estimateurs à noyau de la densité et étude de l'estimateur de décrément aléatoire

Lei, Liangzhen 09 December 2005 (has links) (PDF)
Cette thèse est consacrée à l'étude de deux thèmes : les grandes déviations pour les estimateurs à noyau de la densité $f_n^*$ des processus stochastiques stationnaires et l'estimateur de décrément aléatoire (EDA) pour les processus gaussiens stationnaires.<br /><br /><br />Le premier thème est la partie principale de cette thèse, constituées des quatre premiers chapitres. Dans le chapitre 1, on établit le w*-PGD(principe de grandes déviations) de $f_n^*$ et une inégalité de concentration dans le cas i.i.d.. On démontre dans le chapitre 2 la convergence exponentielle de $f_n^*$ dans $L^1(R^d)$ et une inégalité de concentration pour des suites $\phi$-mélangeants, en se basant sur une inégalité de tranport de Rio. Les chapitre 3 et 4 constituent le coeur de cette thèse : on établit (i) le PGD de $f_n^*$ pour la topologie faible $\sigma(L^1, L^{\infty})$ ; (ii) le w*-PGD de $f_n^*$ dans $L^1$ pour la topologie forte $\vert\cdot\vert_1$ ; (iii) l'estimation de grandes déviations pour l'erreur $D_n^*=\vert f_n^*(x)-f(x) \vert_1$ et (iv) l'optimalité asymptotique de $f_n^*$ au sens de Bahadur. Ces résultats sont prouvés dans le chapitre 3 pour des processus de Markov uniformément ergodiques et dans le chapitre 4 pour des processus de Markov réversibles uniformément intégrables.<br /><br /><br />Le dernier chapitre est consacré au second thème. On démontre la loi des grands nombres et le théorème de limite centrale pour l'EDA à temps discret et on établit pour la première fois l'expression explicite du biais de l'EDA à temps continu.

Page generated in 0.1213 seconds