• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 31
  • 30
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 239
  • 77
  • 77
  • 57
  • 42
  • 32
  • 30
  • 30
  • 30
  • 29
  • 25
  • 25
  • 24
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Costing for the Future: Exploring Cost Estimation with Unmanned Autonomous Systems

Ryan, Thomas Robert Jr. January 2015 (has links)
This thesis explores three topics in the field of cost estimation for Unmanned Autonomous Systems. First, we propose a common definition of an Unmanned Autonomous System. We accomplish this through exhausting the literature in the areas cost estimation, autonomy in its current form, and how such advanced systems might be integrated into their environment. Second, we introduce a method to estimate the cost of Unmanned Autonomous Systems utilizing existing parametric cost estimation tools: SEER–HDR, COCOMO II, COSYSMO, and two cost estimating relationships–weight and performance. This discussion is guided by focusing on how current tools attempt to account for emergent systems. We also attempt to address challenges surrounding autonomy. To address these challenges from a cost perspective, this thesis recommends modifications to parameters within COCOMO II–via the use of object-oriented function points in lieu of current methods, and COSYSMO–via the introduction of two cost drivers namely, TVED and HRI-T. Third, we conduct analysis on four current Army Unmanned Autonomous Systems in an attempt to establish early trends within existing estimates. Finally, we explore areas of further research and discuss the implications of how pursing a more adequate cost model will lead to a better understanding of this ill-defined paradigm. *This material is based upon work supported by the Naval Postgraduate School Acquisition Research Program under Grant No. N00244-15-1-0008. The views expressed in written materials or publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.
102

Analysis of Correlated Data with Measurement Error in Responses or Covariates

Chen, Zhijian January 2010 (has links)
Correlated data frequently arise from epidemiological studies, especially familial and longitudinal studies. Longitudinal design has been used by researchers to investigate the changes of certain characteristics over time at the individual level as well as how potential factors influence the changes. Familial studies are often designed to investigate the dependence of health conditions among family members. Various models have been developed for this type of multivariate data, and a wide variety of estimation techniques have been proposed. However, data collected from observational studies are often far from perfect, as measurement error may arise from different sources such as defective measuring systems, diagnostic tests without gold references, and self-reports. Under such scenarios only rough surrogate variables are measured. Measurement error in covariates in various regression models has been discussed extensively in the literature. It is well known that naive approaches ignoring covariate error often lead to inconsistent estimators for model parameters. In this thesis, we develop inferential procedures for analyzing correlated data with response measurement error. We consider three scenarios: (i) likelihood-based inferences for generalized linear mixed models when the continuous response is subject to nonlinear measurement errors; (ii) estimating equations methods for binary responses with misclassifications; and (iii) estimating equations methods for ordinal responses when the response variable and categorical/ordinal covariates are subject to misclassifications. The first problem arises when the continuous response variable is difficult to measure. When the true response is defined as the long-term average of measurements, a single measurement is considered as an error-contaminated surrogate. We focus on generalized linear mixed models with nonlinear response error and study the induced bias in naive estimates. We propose likelihood-based methods that can yield consistent and efficient estimators for both fixed-effects and variance parameters. Results of simulation studies and analysis of a data set from the Framingham Heart Study are presented. Marginal models have been widely used for correlated binary, categorical, and ordinal data. The regression parameters characterize the marginal mean of a single outcome, without conditioning on other outcomes or unobserved random effects. The generalized estimating equations (GEE) approach, introduced by Liang and Zeger (1986), only models the first two moments of the responses with associations being treated as nuisance characteristics. For some clustered studies especially familial studies, however, the association structure may be of scientific interest. With binary data Prentice (1988) proposed additional estimating equations that allow one to model pairwise correlations. We consider marginal models for correlated binary data with misclassified responses. We develop “corrected” estimating equations approaches that can yield consistent estimators for both mean and association parameters. The idea is related to Nakamura (1990) that is originally developed for correcting bias induced by additive covariate measurement error under generalized linear models. Our approaches can also handle correlated misclassifications rather than a simple misclassification process as considered by Neuhaus (2002) for clustered binary data under generalized linear mixed models. We extend our methods and further develop marginal approaches for analysis of longitudinal ordinal data with misclassification in both responses and categorical covariates. Simulation studies show that our proposed methods perform very well under a variety of scenarios. Results from application of the proposed methods to real data are presented. Measurement error can be coupled with many other features in the data, e.g., complex survey designs, that can complicate inferential procedures. We explore combining survey weights and misclassification in ordinal covariates in logistic regression analyses. We propose an approach that incorporates survey weights into estimating equations to yield design-based unbiased estimators. In the final part of the thesis we outline some directions for future work, such as transition models and semiparametric models for longitudinal data with both incomplete observations and measurement error. Missing data is another common feature in applications. Developing novel statistical techniques for dealing with both missing data and measurement error can be beneficial.
103

Selecting the Working Correlation Structure by a New Generalized AIC Index for Longitudinal Data

Lin, Wei-Lun 28 November 2007 (has links)
The analysis of longitudinal data has been a popular subject for the recent years. The growth of the Generalized Estimating Equation (GEE) Liang & Zeger, 1986) is one of the most influential recent developments in statistical practice for this practice. GEE methods are attractive both from a theoretical and a practical standpoint. In this paper, we are interested in the influence of different "working" correlation structures for modeling the longitudinal data. Furthermore, we propose a new AIC-like method for the model assessment which generalized AIC from the point of view of the data generating. By comparing the difference of the log-likelihood functions between different correlation models, we define the exact value to create an interval for our model selection. In this thesis, we combine the GEE method and a new generalized AIC Index for the longitudinal data with different correlation structures.
104

SAPARD ir Lietuvos 2004-2005 m. Lietuvos bendrojo programavimo dokumento Kauno plėtros ir žuvininkystės prioriteto priemonių projektų vertinimas / Projects estimating of SAPARD program an measures under Lithuanian 2004-2006 SPD priority, rural and fisheries development

Kurelaitis, Justas 05 April 2006 (has links)
Lietuva, kaip ir kitos buvusios šalys kandidatės, prieš įstodamos į Europos Sąjungą, turėjo galimybę pasinaudoti Europos Sąjungos finansine parama pagal Specialiąja žemės ūkio ir kaimo plėtros programą ( SAPARD ), kurios tikslas buvo sumažinti skirtumus tarp šalių kandidačių ir Europos Sąjungos vykdomos žemės ūkio politikos. Šalys – kandidatės, siekusios šios programos paramos, turėjo įvykdyti Europos Sąjungos ( toliau ES ) nustatytus reikalavimus. Lietuva, vykdydama šiuos reikalavimus, parengė ir su Europos Komisija suderino Nacionalinę žemės ūkio ir kaimo plėtros programą 2000-2006 metams ( toliau NŽŪKPP ), kuria remiantis ir buvo įgyvendinama SAPARD programa. Vykdant reikalavimus, taip pat buvo įsteigta Nacionalinė mokėjimo agentūrą prie Žemės ūkio ministerijos ( toliau NMA ), kuri padedant LR žemės ūkio ministerijai ( toliau ŽŪM ) buvo atsakinga už SAPARD paramos administravimą. / The purpose of this work to analyse projects is estimation of SAPARD programs and fourth priority of the national SPD in Lithuania, particulary the mainly attention, paying to NPA(National Paying Agency) sharping the settled acreditation criteria of EU.And offermeasures in order to improve estimation of projects in Lithuania.
105

Goodness-of-Fit Test Issues in Generalized Linear Mixed Models

Chen, Nai-Wei 2011 December 1900 (has links)
Linear mixed models and generalized linear mixed models are random-effects models widely applied to analyze clustered or hierarchical data. Generally, random effects are often assumed to be normally distributed in the context of mixed models. However, in the mixed-effects logistic model, the violation of the assumption of normally distributed random effects may result in inconsistency for estimates of some fixed effects and the variance component of random effects when the variance of the random-effects distribution is large. On the other hand, summary statistics used for assessing goodness of fit in the ordinary logistic regression models may not be directly applicable to the mixed-effects logistic models. In this dissertation, we present our investigations of two independent studies related to goodness-of-fit tests in generalized linear mixed models. First, we consider a semi-nonparametric density representation for the random effects distribution and provide a formal statistical test for testing normality of the random-effects distribution in the mixed-effects logistic models. We obtain estimates of parameters by using a non-likelihood-based estimation procedure. Additionally, we not only evaluate the type I error rate of the proposed test statistic through asymptotic results, but also carry out a bootstrap hypothesis testing procedure to control the inflation of the type I error rate and to study the power performance of the proposed test statistic. Further, the methodology is illustrated by revisiting a case study in mental health. Second, to improve assessment of the model fit in the mixed-effects logistic models, we apply the nonparametric local polynomial smoothed residuals over within-cluster continuous covariates to the unweighted sum of squares statistic for assessing the goodness-of-fit of the logistic multilevel models. We perform a simulation study to evaluate the type I error rate and the power performance for detecting a missing quadratic or interaction term of fixed effects using the kernel smoothed unweighted sum of squares statistic based on the local polynomial smoothed residuals over x-space. We also use a real data set in clinical trials to illustrate this application.
106

An examination of individual and social network factors that influence needle sharing behaviour among Winnipeg injection drug users

Sulaiman, Patricia C. 14 December 2005 (has links)
The sharing of needles among injection drug users (IDUs) is a common route of Human Immunodeficiency Virus and Hepatitis C Virus transmission. Through the increased utilization of social network analysis, researchers have been able to examine how the interpersonal relationships of IDUs affect injection risk behaviour. This study involves a secondary analysis of data from a cross-sectional study of 156 IDUs from Winnipeg, Manitoba titled “Social Network Analysis of Injection Drug Users”. Multiple logistic regression analysis was used to assess the individual and the social network characteristics associated with needle sharing among the IDUs. Generalized Estimating Equations analysis was used to determine the injecting dyad characteristics which influence needle sharing behaviour between the IDUs and their injection drug using network members. The results revealed five key thematic findings that were significantly associated with needle sharing: (1) types of drug use, (2) socio-demographic status, (3) injecting in semi-public locations, (4) intimacy, and (5) social influence. The findings from this study suggest that comprehensive prevention approaches that target individuals and their network relationships may be necessary for sustainable reductions in needle sharing among IDUs.
107

An examination of individual and social network factors that influence needle sharing behaviour among Winnipeg injection drug users

Sulaiman, Patricia C. 14 December 2005 (has links)
The sharing of needles among injection drug users (IDUs) is a common route of Human Immunodeficiency Virus and Hepatitis C Virus transmission. Through the increased utilization of social network analysis, researchers have been able to examine how the interpersonal relationships of IDUs affect injection risk behaviour. This study involves a secondary analysis of data from a cross-sectional study of 156 IDUs from Winnipeg, Manitoba titled “Social Network Analysis of Injection Drug Users”. Multiple logistic regression analysis was used to assess the individual and the social network characteristics associated with needle sharing among the IDUs. Generalized Estimating Equations analysis was used to determine the injecting dyad characteristics which influence needle sharing behaviour between the IDUs and their injection drug using network members. The results revealed five key thematic findings that were significantly associated with needle sharing: (1) types of drug use, (2) socio-demographic status, (3) injecting in semi-public locations, (4) intimacy, and (5) social influence. The findings from this study suggest that comprehensive prevention approaches that target individuals and their network relationships may be necessary for sustainable reductions in needle sharing among IDUs.
108

Socio-environmental factors and suicide in Queensland, Australia

Qi, Xin January 2009 (has links)
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
109

Analysis of Some Linear and Nonlinear Time Series Models

Ainkaran, Ponnuthurai January 2004 (has links)
Abstract This thesis considers some linear and nonlinear time series models. In the linear case, the analysis of a large number of short time series generated by a first order autoregressive type model is considered. The conditional and exact maximum likelihood procedures are developed to estimate parameters. Simulation results are presented and compare the bias and the mean square errors of the parameter estimates. In Chapter 3, five important nonlinear models are considered and their time series properties are discussed. The estimating function approach for nonlinear models is developed in detail in Chapter 4 and examples are added to illustrate the theory. A simulation study is carried out to examine the finite sample behavior of these proposed estimates based on the estimating functions.
110

Regional real property valuation forecast accuracy

Cote, Katherine Nicole Arnold, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.

Page generated in 0.0862 seconds