Spelling suggestions: "subject:"estimation anda detection"" "subject:"estimation ando detection""
1 |
Exploitation of signal information for mobile speed estimation and anomaly detectionAfgani, Mostafa Z. January 2011 (has links)
Although the primary purpose of the signal received by amobile handset or smartphone is to enable wireless communication, the information extracted can be reused to provide a number of additional services. Two such services discussed in this thesis are: mobile speed estimation and signal anomaly detection. The proposed algorithms exploit the propagation environment specific information that is already imprinted on the received signal and therefore do not incur any additional signalling overhead. Speed estimation is useful for providing navigation and location based services in areas where global navigation satellite systems (GNSS) based devices are unusable while the proposed anomaly detection algorithms can be used to locate signal faults and aid spectrum sensing in cognitive radio systems. The speed estimation algorithms described within this thesis require a receiver with at least two antenna elements and a wideband radio frequency (RF) signal source. The channel transfer function observed at the antenna elements are compared to yield an estimate of the device speed. The basic algorithm is a one-dimensional and unidirectional two-antenna solution. The speed of the mobile receiver is estimated from a knowledge of the fixed inter-antenna distance and the time it takes for the trailing antenna to sense similar channel conditions previously observed at the leading antenna. A by-product of the algorithm is an environment specific spatial correlation function which may be combined with theoretical models of spatial correlation to extend and improve the accuracy of the algorithm. Results obtained via computer simulations are provided. The anomaly detection algorithms proposed in this thesis highlight unusual signal features while ignoring events that are nominal. When the test signal possesses a periodic frame structure, Kullback-Leibler divergence (KLD) analysis is employed to statistically compare successive signal frames. A method of automatically extracting the required frame period information from the signal is also provided. When the signal under test lacks a periodic frame structure, information content analysis of signal events can be used instead. Clean training data is required by this algorithm to initialise the reference event probabilities. In addition to the results obtained from extensive computer simulations, an architecture for field-programmable gate array (FPGA) based hardware implementations of the KLD based algorithm is provided. Results showing the performance of the algorithms against real test signals captured over the air are also presented. Both sets of algorithms are simple, effective and have low computational complexity – implying that real-time implementations on platforms with limited processing power and energy are feasible. This is an important quality since location based services are expected to be an integral part of next generation cognitive radio handsets.
|
2 |
Analysis of Optimization Methods in Multisteerable Filter DesignZanco, Philip 10 August 2016 (has links)
The purpose of this thesis is to study and investigate a practical and efficient implementation of corner orientation detection using multisteerable filters. First, practical theory involved in applying multisteerable filters for corner orientation estimation is presented. Methods to improve the efficiency with which multisteerable corner filters are applied to images are investigated and presented. Prior research in this area presented an optimization equation for determining the best match of corner orientations in images; however, little research has been done on optimization techniques to solve this equation. Optimization techniques to find the maximum response of a similarity function to determine how similar a corner feature is to a multioriented corner template are also explored and compared in this research.
|
3 |
Real-time analysis of aggregate network traffic for anomaly detectionKim, Seong Soo 29 August 2005 (has links)
The frequent and large-scale network attacks have led to an increased need for
developing techniques for analyzing network traffic. If efficient analysis tools were
available, it could become possible to detect the attacks, anomalies and to appropriately
take action to contain the attacks before they have had time to propagate across the
network.
In this dissertation, we suggest a technique for traffic anomaly detection based on
analyzing the correlation of destination IP addresses and distribution of image-based
signal in postmortem and real-time, by passively monitoring packet headers of traffic.
This address correlation data are transformed using discrete wavelet transform for
effective detection of anomalies through statistical analysis. Results from trace-driven
evaluation suggest that the proposed approach could provide an effective means of
detecting anomalies close to the source. We present a multidimensional indicator using
the correlation of port numbers as a means of detecting anomalies.
We also present a network measurement approach that can simultaneously detect,
identify and visualize attacks and anomalous traffic in real-time. We propose to
represent samples of network packet header data as frames or images. With such a
formulation, a series of samples can be seen as a sequence of frames or video. Thisenables techniques from image processing and video compression such as DCT to be
applied to the packet header data to reveal interesting properties of traffic. We show that
??scene change analysis?? can reveal sudden changes in traffic behavior or anomalies. We
show that ??motion prediction?? techniques can be employed to understand the patterns of
some of the attacks. We show that it may be feasible to represent multiple pieces of data
as different colors of an image enabling a uniform treatment of multidimensional packet
header data.
Measurement-based techniques for analyzing network traffic treat traffic volume
and traffic header data as signals or images in order to make the analysis feasible. In this
dissertation, we propose an approach based on the classical Neyman-Pearson Test
employed in signal detection theory to evaluate these different strategies. We use both of
analytical models and trace-driven experiments for comparing the performance of
different strategies. Our evaluations on real traces reveal differences in the effectiveness
of different traffic header data as potential signals for traffic analysis in terms of their
detection rates and false alarm rates. Our results show that address distributions and
number of flows are better signals than traffic volume for anomaly detection. Our results
also show that sometimes statistical techniques can be more effective than the NP-test
when the attack patterns change over time.
|
4 |
Determination of Biomass in Shrimp-Farm using Computer VisionTammineni, Gowtham Chowdary 30 October 2023 (has links)
The automation in the aquaculture is proving to be more and more effective these days.
The economic drain on the aquaculture farmers due to the high mortality of the shrimps can be reduced by ensuring the welfare of the animals. The health of shrimps can decline with even barest of changes in the conditions in the farm. This is the result of increase in stress. As shrimps are quite sensitive to the changes, even small changes can increase the stress in the animals which results in the decline of health. This severely dampens the mortality rate in the animals.
Also, human interference while feeding the shrimps severely induces the stress on the shrimps and thereby affecting the shrimp’s mortality. So, to ensure the optimum
efficiency of the farm, the feeding of the shrimps is made automated. The underfeeding and overfeeding also affects the growth of shrimps. To determine the right amount of food to provide for shrimps, Biomass is a very helpful parameter.
The use of artificial intelligence (AI) to calculate the farm's biomass is the project's primary area of interest. This model uses the cameras mounted on top of the tank at densely populated areas. These cameras monitor the farm, and our model detects the biomass. By doing so, it is possible to estimate how much food should be distributed at that particular area. Biomass of the shrimps can be calculated with the help of the number of shrimps and the average lengths of the shrimps detected. With the reduced human interference in calculating the biomass, the health of the animals improves and thereby making the process sustainable and economical.
|
5 |
Blind Channel Estimation Based On The Lloyd-max Algorithm Innarrowband Fading Channels And JammingDizdar, Onur 01 June 2011 (has links) (PDF)
In wireless communications, knowledge of the channel coefficients is required for coherent
demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max
algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation
points for the received signal using an iterative least squares approach. The algorithm is
investigated for fast-frequency hopping systems with small block lengths and operating under
partial-band and partial-time jamming for both detecting the jammer and estimating the
channel. The performance of the Lloyd-Max channel estimation algorithm is compared to the
performance of pilot-based channel estimation algorithms which also use the least squares
approach and non-coherent demodulation and decoding.
|
6 |
Techniques d'estimation de paramètres pour la localisation à l'intérieur via WiFi / Parameter estimation techniques for indoor localisation via WiFiBazzi, Ahmad 23 October 2017 (has links)
Dans un environnement intérieur, le problème de l'extraction du composant l'Angle de Arrivée de la Line-of-Sight entre un émetteur et un récepteur Wi-Fi utilisant un lien SIMO est la principale préoccupation de cette thèse. Un des principaux défis à relever est dû au riche canal multipath que les environnements intérieurs apprécient. C'est ainsi parce que multipath résulte du fait que le canal de propagation se compose de plusieurs obstacles et réflecteurs. Ainsi, le signal reçu arrive comme un ensemble imprévisible de réflexions et / ou d'ondes directes avec son degré d'atténuation et de retard. D'autres défis sont la limitation des ressources, telles que le nombre d'antennes, la bande passante disponible et le rapport Signal / Bruit; sans parler des «imperfections» Wi-Fi, telles que les disparités de gain / phase entre les antennes et les problèmes de synchronisation entre l'émetteur et le récepteur. Dans cette thèse, notre objectif principal est de mettre en place un système en temps réel qui pourrait mesurer l'angle entre un émetteur et un récepteur en présence de tous les défis. En particulier, nous avons pris en compte tous les facteurs qui perturbent le problème d'estimation de l'angle articulaire et du délai et formulé un modèle de système en conséquence. Ces facteurs sont les suivants: Sampling Frequency offset (SFO), Carrier Frequency Offset (CFO), et Phase/Delay offsets à chaque antenne. Pour compenser l'efficacité de ces facteurs critiques, nous proposons une méthode d'étalonnage optimale pour compenser tous leurs effets. Cette thèse comprendra également d'autres méthodes théoriques qui doivent faire face au problème d'estimation de l'angle d'arrivée, à partir du point de vue de la compression et du traitement du signal. / In an indoor environment, the problem of extracting the Angle-of-Arrival of the Line-of-Sight component between a transmitter and Wi-Fi receiver using a SIMO link is the main concern of this thesis. One main challenge in doing so is due to the rich multipath channel that indoor environments enjoy. This is so because multipath results from the fact that the propagation channel consists of several obstacles and reflectors. Thus, the received signal arrives as an unpredictable set of reflections and/or direct waves each with its own degree of attenuation and delay. Other challenges are limitation of resources, such as number of antennas, available bandwidth, and Signal-to-Noise-Ratio; not to mention the Wi-Fi ”imperfections”, such as gain/phase mismatches between antennas and synchronisation issues between transmitter and receiver. In this thesis, our main focus is implementing a real-time system that could measure the angle between a transmitter and receiver in the presence of all challenges. In particular, we have taken into account all factors that perturb the Joint Angle and Delay estimation problem and formulated a system model accordingly. These factors are: Sampling Frequency offset (SFO), Carrier Frequency Offset (CFO), Phase and Delay offsets at each antenna. To compensate for the effect of these critical factors, we propose an offline calibration method to compensate for all their effects. This thesis will also include other theoretical methods that have to deal with Angle-of-Arrival Estimation problem from compressed sensing and signal processing point of views.
|
7 |
Entwicklung und Validierung methodischer Konzepte einer kamerabasierten Durchfahrtshöhenerkennung für NutzfahrzeugeHänert, Stephan 03 July 2020 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Konzeptionierung und Entwicklung eines neuartigen Fahrerassistenzsystems für Nutzfahrzeuge, welches die lichte Höhe von vor dem Fahrzeug befindlichen Hindernissen berechnet und über einen Abgleich mit der einstellbaren Fahrzeughöhe die Passierbarkeit bestimmt. Dabei werden die von einer Monokamera aufgenommenen Bildsequenzen genutzt, um durch indirekte und direkte Rekonstruktionsverfahren ein 3D-Abbild der Fahrumgebung zu erschaffen. Unter Hinzunahme einer Radodometrie-basierten Eigenbewegungsschätzung wird die erstellte 3D-Repräsentation skaliert und eine Prädiktion der longitudinalen und lateralen Fahrzeugbewegung ermittelt. Basierend auf dem vertikalen Höhenplan der Straßenoberfläche, welcher über die Aneinanderreihung mehrerer Ebenen modelliert wird, erfolgt die Klassifizierung des 3D-Raums in Fahruntergrund, Struktur und potentielle Hindernisse.
Die innerhalb des Fahrschlauchs liegenden Hindernisse werden hinsichtlich ihrer Entfernung und Höhe bewertet. Ein daraus abgeleitetes Warnkonzept dient der optisch-akustischen Signalisierung des Hindernisses im Kombiinstrument des Fahrzeugs. Erfolgt keine entsprechende Reaktion durch den Fahrer, so wird bei kritischen Hindernishöhen eine Notbremsung durchgeführt.
Die geschätzte Eigenbewegung und berechneten Hindernisparameter werden mithilfe von Referenzsensorik bewertet. Dabei kommt eine dGPS-gestützte Inertialplattform sowie ein terrestrischer und mobiler Laserscanner zum Einsatz. Im Rahmen der Arbeit werden verschiedene Umgebungssituationen und Hindernistypen im urbanen und ländlichen Raum untersucht und Aussagen zur Genauigkeit und Zuverlässigkeit des Verfahrens getroffen. Ein wesentlicher Einflussfaktor auf die Dichte und Genauigkeit der 3D-Rekonstruktion ist eine gleichmäßige Umgebungsbeleuchtung innerhalb der Bildsequenzaufnahme. Es wird in diesem Zusammenhang zwingend auf den Einsatz einer Automotive-tauglichen Kamera verwiesen. Die durch die Radodometrie bestimmte Eigenbewegung eignet sich im langsamen Geschwindigkeitsbereich zur Skalierung des 3D-Punktraums. Dieser wiederum sollte durch eine Kombination aus indirektem und direktem Punktrekonstruktionsverfahren erstellt werden. Der indirekte Anteil stützt dabei die Initialisierung des Verfahrens zum Start der Funktion und ermöglicht eine robuste Kameraschätzung. Das direkte Verfahren ermöglicht die Rekonstruktion einer hohen Anzahl an 3D-Punkten auf den Hindernisumrissen, welche zumeist die Unterkante beinhalten. Die Unterkante kann in einer Entfernung bis zu 20 m detektiert und verfolgt werden. Der größte Einflussfaktor auf die Genauigkeit der Berechnung der lichten Höhe von Hindernissen ist die Modellierung des Fahruntergrunds. Zur Reduktion von Ausreißern in der Höhenberechnung eignet sich die Stabilisierung des Verfahrens durch die Nutzung von zeitlich vorher zur Verfügung stehenden Berechnungen. Als weitere Maßnahme zur Stabilisierung wird zudem empfohlen die Hindernisausgabe an den Fahrer und den automatischen Notbremsassistenten mittels einer Hysterese zu stützen.
Das hier vorgestellte System eignet sich für Park- und Rangiervorgänge und ist als kostengünstiges Fahrerassistenzsystem interessant für Pkw mit Aufbauten und leichte Nutzfahrzeuge. / The present work deals with the conception and development of a novel advanced driver assistance system for commercial vehicles, which estimates the clearance height of obstacles in front of the vehicle and determines the passability by comparison with the adjustable vehicle height. The image sequences captured by a mono camera are used to create a 3D representation of the driving environment using indirect and direct reconstruction methods. The 3D representation is scaled and a prediction of the longitudinal and lateral movement of the vehicle is determined with the aid of a wheel odometry-based estimation of the vehicle's own movement. Based on the vertical elevation
plan of the road surface, which is modelled by attaching several surfaces together, the 3D space is classified into driving surface, structure and potential obstacles. The obstacles within the predicted driving tube are evaluated with regard to their distance and height. A warning concept derived from this serves to visually and acoustically signal the obstacle in the vehicle's instrument cluster. If the driver does not respond accordingly, emergency braking will be applied at critical obstacle heights. The estimated vehicle movement and calculated obstacle parameters are evaluated with the aid of reference sensors. A dGPS-supported inertial measurement unit and a terrestrial as well as a mobile laser scanner are used. Within the scope of the work, different environmental situations and obstacle types in urban and rural areas are investigated and statements on the accuracy and reliability of the implemented function are made.
A major factor influencing the density and accuracy of 3D reconstruction is uniform ambient lighting within the image sequence. In this context, the use of an automotive camera is mandatory. The inherent motion determined by wheel odometry is suitable for scaling the 3D point space in the slow speed range. The 3D representation however, should be created by a combination of indirect and direct point reconstruction methods. The indirect part supports the initialization phase of the function and enables a robust camera estimation. The direct method enables the reconstruction of a large number of 3D points on the obstacle outlines, which usually contain the lower edge. The lower edge can be detected and tracked up to 20 m away. The biggest factor influencing the accuracy of the calculation of the clearance height of obstacles is the modelling of the driving surface. To reduce outliers in the height calculation, the method can be stabilized by using calculations from older time steps. As a further stabilization measure, it is also recommended to support the obstacle output to the driver and the automatic emergency brake assistant by means of hysteresis. The system presented here is suitable for parking and maneuvering operations and is interesting as a cost-effective driver assistance system for cars with superstructures and light commercial vehicles.
|
Page generated in 0.1619 seconds