• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes dʼestimation de la profondeur par mise en correspondance stéréoscopique à lʼaide de champs aléatoires couplés

Narasimha, Ramya 14 September 2010 (has links) (PDF)
La profondeur des objets dans la scène 3-D peut être récupérée à partir d'une paire d'images stéréo en trouvant des correspondances entre les deux points de vue. Cette tâche consiste à identifier les points dans les images gauche et droite, qui sont les projections du même point de la scène. La différence entre les emplacements des deux points correspondants est la disparité, qui est inversement proportionnelle à la profondeur 3D. Dans cette thèse, nous nous concentrons sur les techniques Bayésiennes qui contraignent les estimations des disparités en appliquant des hypothèses de lissage explicites. Cependant, il ya des contraintes supplémentaires qui doivent être incluses, par exemple, les disparités ne doivent pas être lissées au travers des bords des objets, les disparités doivent être compatibles avec les propriétées géométriques de la surface. L'objectif de cette thèse est d'intégrer ces contraintes en utilisant des informations monoculaires et des informations géométrique différentielle sur la surface. Dans ce but, cette thèse considère deux problèmes importants associés à stéréo : le premier est la localisation des discontinuités des disparités et le second vise à récupérer les disparités binoculaires en conformité avec les propriétés de surface de la scène. Afin de faire face aux discontinuités des disparités, nous nous proposons d'estimer conjointement les disparités et les frontières des objets. Cette démarche est motivée par le fait que les discontinuités des disparités se trouvent à proximité des frontières des objets. La seconde méthode consiste à contraindre les disparités pour qu'elles soient compatibles avec la surface et les normales à la surface en estimant les deux en même temps.
2

Mise en correspondance stéréoscopique par approches variationnelles convexes ; application à la détection d'obstacles routiers

Souid-Miled, Wided 17 December 2007 (has links) (PDF)
Cette thèse porte sur la mise en correspondance stéréoscopique ainsi que sur son application à la détection des obstacles routiers à partir d'un système de vision stéréoscopique. La mise en correspondance est une étape cruciale dans la reconstruction de la structure tridimensionnelle de la scène observée. Elle consiste à retrouver les pixels homologues dans deux images prises de deux points de vue différents, et se ramène à un problème d'estimation d'un champ de disparité. La première partie de ma thèse a porté sur l'estimation de la disparité, dans le cadre d'une approche ensembliste, en minimisant une fonction objective convexe sur l'intersection d'ensembles convexes, construits à partir des connaissances a priori et des observations. Dans la plupart des applications de stéréovision, le champ de disparité doit être lisse dans les zones homogènes et les zones faiblement texturées. L'une de nos contributions a consisté à proposer différentes contraintes de régularisation satisfaisant cette propriété. Pour résoudre le problème d'optimisation considéré, nous utilisons un algorithme efficace itératif par bloc. La deuxième partie traite du problème d'estimation de la disparité en présence de changements d'illumination dans la scène observée. Nous considérons pour cela un modèle d'illumination multiplicatif qui permet de compenser les variations spatiales de luminosité de la scène. Enfin, dans la troisième partie, nous appliquons notre méthode d'estimation de la disparité robuste aux variations d'illumination pour la détection des obstacles routiers.

Page generated in 0.1666 seconds