• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 30
  • 2
  • Tagged with
  • 70
  • 70
  • 42
  • 39
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithme de recherche de point-selle de lagrangien non strictement convexe. Application a l'optimisation des investissements pour un réseau electrique.

Balducchi, Jean-François 10 December 1982 (has links) (PDF)
Étude de l'optimisation des capacités de transport des lignes du réseau électrique national, de façon à minimiser la somme des couts de production électrique et des couts d'investissement des lignes de transport électrique. Formulation du problème d'optimisation stochastique, approches primale et duale, résolution des problèmes de minimax par l'approche duale, recherche de point selle dans le cas d'un lagrangien non strictement convexe, application au problème EDF.
2

Allocation de ressources distribuée dans les réseaux OFDMA multi-cellulaires

Pischella, Mylène 23 March 2009 (has links) (PDF)
La thèse étudie des méthodes d'allocation de ressources, distribuées par station de base (BS) dans les réseaux OFDMA multi-cellulaires. L'objectif est de fournir la Qualité de Service (QdS) requise par chaque utilisateur, quelle que soit sa localisation dans la cellule. Les travaux portent d'abord sur la coordination causale de réseaux. Deux BSs forment un lien MIMO virtuel pour les utilisateurs localisés en bordure de cellule. Ces utilisateurs bénéficient d'un gain de diversité et d'une diminution de l'interférence inter-cellulaire. L'efficacité de la méthode d'allocation de ressources associée dépend de l'équité du contrôle de puissance. En conséquence, la coordination de réseaux est utilisée pour les utilisateurs à Débit Contraint (DC), mais pas pour les utilisateurs Best Effort (BE), dans un algorithme permettant de gérer conjointement les deux objectifs de QdS. La thèse étudie ensuite les réseaux totalement distribués. Pour les utilisateurs DC, une méthode d'allocation de ressources incluant une allocation de puissance itérative est déterminée pour résoudre le problème Margin Adaptive. Cette méthode est étendue aux utilisateurs DC en MIMO, lorsque le transmetteur connaît tout l'information de canal, ou uniquement ses caractéristiques statistiques. Pour les utilisateurs BE, enfin, l'objectif est de maximiser la somme des débits pondérés, le poids de chaque utilisateur étant proportionnel à la longueur de sa file d'attente. Une méthode d'allocation de sous-porteuses, déduite d'un graphe d'interférence, et une méthode de contrôle de puissance distribuée sont proposées pour résoudre ce problème d'optimisation.
3

Learning algorithms and statistical software, with applications to bioinformatics / Algorithmes d'apprentissage et logiciels pour la statistique, avec applications à la bioinformatique

Hocking, Toby Dylan 20 November 2012 (has links)
L'apprentissage statistique est le domaine des mathématiques qui aborde le développement des algorithmes d'analyse de données. Cette thèse est divisée en deux parties : l'introduction de modèles mathématiques et l'implémentation d'outils logiciels. Dans la première partie, je présente de nouveaux algorithmes pour la segmentation et pour le partitionnement de données (clustering). Le partitionnement de données et la segmentation sont des méthodes d'analyse qui cherche des structures dans les données. Je présente les contributions suivantes, en soulignant les applications à la bioinformatique. Dans la deuxième partie, je présente mes contributions au logiciel libre pour la statistique, qui est utilisé pour l'analyse quotidienne du statisticien. / Statistical machine learning is a branch of mathematics concerned with developing algorithms for data analysis. This thesis presents new mathematical models and statistical software, and is organized into two parts. In the first part, I present several new algorithms for clustering and segmentation. Clustering and segmentation are a class of techniques that attempt to find structures in data. I discuss the following contributions, with a focus on applications to cancer data from bioinformatics. In the second part, I focus on statistical software contributions which are practical for use in everyday data analysis.
4

Image restoration in the presence of Poisson-Gaussian noise / Restauration d'images dégradées par un bruit Poisson-Gauss

Jezierska, Anna Maria 13 May 2013 (has links)
Cette thèse porte sur la restauration d'images dégradées à la fois par un flou et par un bruit. Une attention particulière est portée aux images issues de la microscopie confocale et notamment celles de macroscopie. Dans ce contexte, un modèle de bruit Poisson-Gauss apparaît bien adapté car il permet de prendre en compte le faible nombre de photons et le fort bruit enregistrés simultanément par les détecteurs. Cependant, ce type de modèle de bruit a été peu exploité car il pose de nombreuses difficultés tant théoriques que pratiques. Dans ce travail, une approche variationnelle est adoptée pour résoudre le problème de restauration dans le cas où le terme de fidélité exact est considéré. La solution du problème peut aussi être interprétée au sens du Maximum A Posteriori (MAP). L'utilisation d'algorithmes primaux-duaux récemment proposés en optimisation convexe permet d'obtenir de bons résultats comparativement à plusieurs approches existantes qui considèrent des approximations variées du terme de fidélité. En ce qui concerne le terme de régularisation de l'approche MAP, des approximations discrète et continue de la pseudo-norme $ell_0$ sont considérées. Cette mesure, célèbre pour favoriser la parcimonie, est difficile à optimiser car elle est, à la fois, non convexe et non lisse. Dans un premier temps, une méthode basée sur les coupures de graphes est proposée afin de prendre en compte des à priori de type quadratique tronqué. Dans un second temps, un algorithme à mémoire de gradient de type Majoration-Minimisation, dont la convergence est garantie, est considéré afin de prendre en compte des a priori de type norme $ell_2-ell_0$. Cet algorithme permet notamment d'obtenir de bons résultats dans des problèmes de déconvolution. Néanmoins, un inconvénient des approches variationnelles est qu'elles nécessitent la détermination d'hyperparamètres. C'est pourquoi, deux méthodes, reposant sur une approche Espérance-Maximisation (EM) sont proposées, dans ce travail, afin d'estimer les paramètres d'un bruit Poisson-Gauss: (1) à partir d'une série temporelle d'images (dans ce cas, des paramètres de « bleaching » peuvent aussi être estimés) et (2) à partir d'une seule image. De manière générale, cette thèse propose et teste de nombreuses méthodologies adaptées à la prise en compte de bruits et de flous difficiles, ce qui devrait se révéler utile pour des applications variées, au-delà même de la microscopie / This thesis deals with the restoration of images corrupted by blur and noise, with emphasis on confocal microscopy and macroscopy applications. Due to low photon count and high detector noise, the Poisson-Gaussian model is well suited to this context. However, up to now it had not been widely utilized because of theoretical and practical difficulties. In view of this, we formulate the image restoration problem in the presence of Poisson-Gaussian noise in a variational framework, where we express and study the exact data fidelity term. The solution to the problem can also be interpreted as a Maximum A Posteriori (MAP) estimate. Using recent primal-dual convex optimization algorithms, we obtain results that outperform methods relying on a variety of approximations. Turning our attention to the regularization term in the MAP framework, we study both discrete and continuous approximation of the $ell_0$ pseudo-norm. This useful measure, well-known for promoting sparsity, is difficult to optimize due to its non-convexity and its non-smoothness. We propose an efficient graph-cut procedure for optimizing energies with truncated quadratic priors. Moreover, we develop a majorize-minimize memory gradient algorithm to optimize various smooth versions of the $ell_2-ell_0$ norm, with guaranteed convergence properties. In particular, good results are achieved on deconvolution problems. One difficulty with variational formulations is the necessity to tune automatically the model hyperparameters. In this context, we propose to estimate the Poisson-Gaussian noise parameters based on two realistic scenarios: one from time series images, taking into account bleaching effects, and another from a single image. These estimations are grounded on the use of an Expectation-Maximization (EM) approach.Overall, this thesis proposes and evaluates various methodologies for tackling difficult image noise and blur cases, which should be useful in various applicative contexts within and beyond microscopy
5

Estimation robuste pour les systèmes incertains

Bayon, Benoît 06 December 2012 (has links) (PDF)
Un système est dit robuste s'il est possible de garantir son bon comportement dynamique malgré les dispersions de ses caractéristiques lors de sa fabrication, les variations de l'environnement ou encore son vieillissement. Au-delà du fait que la dispersion des caractéristiques est inéluctable, une plus grande dispersion permet notamment de diminuer fortement les coûts de production. La prise en compte explicite de la robustesse par les ingénieurs est donc un enjeu crucial lors de la conception d'un système. Des propriétés robustes peuvent être garanties lors de la synthèse d'un correcteur en boucle fermée. Il est en revanche beaucoup plus difficile de garantir ces propriétés en boucle ouverte, ce qui concerne par exemple des cas comme la synthèse d'estimateur.Prendre en compte la robustesse lors de la synthèse est une problématique importante de la communauté du contrôle robuste. Un certain nombre d'outils ont été développés pour analyser la robustesse d'un système vis-à-vis d'un ensemble d'incertitudes(μ analyse par exemple). Bien que le problème soit intrinsèquement complexe au sens algorithmique, des relaxations ont permis de formuler des conditions suffisantes pour tester la stabilité d'un système vis-à-vis d'un ensemble d'incertitudes. L'émergence de l'Optimisation sous contrainte Inégalité Matricielle Linéaire (LMI) a permis de tester ces conditions suffisantes au moyen d'un algorithme efficace, c'est-à-dire convergeant vers une solution en un temps raisonnable grâce au développement des méthodes des points intérieurs.En se basant sur ces résultats d'analyse, le problème de synthèse de correcteurs en boucle fermée ne peut pas être formulé sous la forme d'un problème d'optimisation pour lequel un algorithme efficace existe. En revanche, pour certains cas comme la synthèse de filtres robustes, le problème de synthèse peut être formulé sous la forme d'un problème d'optimisation sous contrainte LMI pour lequel un algorithme efficace existe. Ceci laisse entrevoir un certain potentiel de l'approche robuste pour la synthèse d'estimateurs.Exploitant ce fait, cette thèse propose une approche complète du problème de synthèse d'estimateurs robustes par l'intermédiaire des outils d'analyse de la commande robuste en conservant le caractère efficace de la synthèse lié aux outils classiques. Cette approche passe par une ré-interprétation de l'estimation nominale (sans incertitude) par l'optimisation sous contrainte LMI, puis par une extension systématique des outils de synthèse et d'analyse développés pour l'estimation nominale à l'estimation robuste.Cette thèse présente des outils de synthèse d'estimateurs, mais également des outils d'analyse qui permettront de tester les performances robustes atteintes par les estimateurs.Les résultats présentés dans ce document sont exprimés sous la forme de théorèmes présentant des contraintes LMI. Ces théorèmes peuvent se mettre de façon systématique sous la forme d'un problème d'optimisation pour lequel un algorithme efficace existe.Pour finir, les problèmes de synthèse d'estimateurs robustes appartiennent à une classe plus générale de problèmes de synthèse robuste : les problèmes de synthèse robuste en boucle ouverte. Ces problèmes de synthèse ont un potentiel très intéressant. Des résultats de base sont formulés pour la synthèse en boucle ouverte, permettant de proposer des méthodes de synthèse robustes dans des cas pour lesquels la mise en place d'une boucle de rétroaction est impossible. Une extension aux systèmes LPV avec une application à la commande de position sans capteur de position est également proposée.
6

Conception d'un capteur sonore pour la localisation de source en robotique mobile

Argentieri, Sylvain 08 December 2006 (has links) (PDF)
Le système auditif de l'homme fournit de nombreuses informations sur son environnement sonore. Nous sommes par exemple capables de localiser précisément l'origine d'un son et d'en interpréter sa signification, si bien qu'il parait aujourd'hui extrêmement difficile de se passer de ces informations sonores dans un monde dynamique et imprévisible. Pourtant, la robotique mobile n'a que très peu intégré cette modalité auditive, bien qu'elle apparaisse indispensable pour compléter les informations délivrées par les autres capteurs extéroceptifs tels que les caméras, les télémètres lasers ou les d´etecteurs ultra-sonores. Nous présentons dans cette thèse la conception d'un système auditif artificiel, composé de 8 microphones omnidirectionnels et d'une carte d'acquisition/traitement, pour la localisation de source sonore. Cette problématique a déjà été très largement traitée dans la littérature issue du Traitement du Signal et de l'Acoustique. Cependant, des contraintes inédites d'embarquabilité et de temps réel imposées par la robotique limitent l'applicabilité de ces méthodes pour des signaux large bande tels que la voix. Après une étude bibliographique approfondie sur les solutions de localisation déjà proposées en robotique, nous envisageons la définition de formations de voie invariantes en fréquence. Celles-ci sont synthétisées selon une nouvelle méthode d'optimisation convexe basée sur la représentation modale des diagrammes de directivité. Cette solution permet d'améliorer sensiblement la résolution des basses fréquences, aussi bien en champ proche qu'en champ lointain, malgré l'utilisation d'une antenne de microphones de petite taille. Nous exploitons ensuite ces nouvelles formations de voie optimisées pour le tracé d'une carte de puissance acoustique de l'environnement. Comparativement aux méthodes conventionnelles, la localisation s'avère plus précise et permet de traiter des signaux large bande sur la bande de fréquence 400Hz-3kHz. Nous évaluons enfin une extens ion récente de la méthode MUSIC dans l'espace des formations de voie pouvant être compatible avec les contraintes liées au contexte robotique.
7

Parallel magnetic resonance imaging reconstruction problems using wavelet representations

Chaari, Lotfi 05 November 2010 (has links) (PDF)
Pour réduire le temps d'acquisition ou bien améliorer la résolution spatio-temporelle dans certaines application en IRM, de puissantes techniques parallèles utilisant plusieurs antennes réceptrices sont apparues depuis les années 90. Dans ce contexte, les images d'IRM doivent être reconstruites à partir des données sous-échantillonnées acquises dans le " k-space ". Plusieurs approches de reconstruction ont donc été proposées dont la méthode SENSitivity Encoding (SENSE). Cependant, les images reconstruites sont souvent entâchées par des artéfacts dus au bruit affectant les données observées, ou bien à des erreurs d'estimation des profils de sensibilité des antennes. Dans ce travail, nous présentons de nouvelles méthodes de reconstruction basées sur l'algorithme SENSE, qui introduisent une régularisation dans le domaine transformé en ondelettes afin de promouvoir la parcimonie de la solution. Sous des conditions expérimentales dégradées, ces méthodes donnent une bonne qualité de reconstruction contrairement à la méthode SENSE et aux autres techniques de régularisation classique (e.g. Tikhonov). Les méthodes proposées reposent sur des algorithmes parallèles d'optimisation permettant de traiter des critères convexes, mais non nécessairement différentiables contenant des a priori parcimonieux. Contrairement à la plupart des méthodes de reconstruction qui opèrent coupe par coupe, l'une des méthodes proposées permet une reconstruction 4D (3D + temps) en exploitant les corrélations spatiales et temporelles. Le problème d'estimation d'hyperparamètres sous-jacent au processus de régularisation a aussi été traité dans un cadre bayésien en utilisant des techniques MCMC. Une validation sur des données réelles anatomiques et fonctionnelles montre que les méthodes proposées réduisent les artéfacts de reconstruction et améliorent la sensibilité/spécificité statistique en IRM fonctionnelle
8

Modèles Parcimonieux et Optimisation Convexe pour la Séparation Aveugle de Sources Convolutives

Sudhakara Murthy, Prasad 21 February 2011 (has links) (PDF)
La séparation aveugle de sources à partir de mélanges sous-déterminés se fait traditionnellement en deux étapes: l'estimation des filtres de mélange, puis celle des sources. L'hypothèse de parcimonie temps-fréquence des sources facilite la séparation, qui reste cependant difficile dans le cas de mélanges convolutifs à cause des ambiguités de permutation et de mise à l'échelle. Par ailleurs, la parcimonie temporelle des filtres facilite les techniques d'estimation aveugle de filtres fondées sur des corrélations croisées, qui restent cependant limitées au cas où une seule source est active. Dans cette thèse, on exploite conjointement la parcimonie des sources et des filtres de mélange pour l'estimation aveugle de filtres parcimonieux à partir de mélanges convolutifs stéréophoniques de plusieurs sources. Dans un premier temps, on montre comment la parcimonie des filtres permet de résoudre le problème de permutation, en l'absence de problème de mise à l'échelle. Ensuite, on propose un cadre constitué de deux étapes pour l'estimation, basé sur des versions temps-fréquence de la corrélation croisée et sur la minimisation de norme ℓ1: a) un clustering qui regroupe les points temps-fréquence où une seule source est active; b) la résolution d'un problème d'optimisation convexe pour estimer les filtres. La performance des algorithmes qui en résultent est évalués numériquement sur des problèmes de filtre d'estimation de filtres et de séparation de sources audio.
9

Convex optimization for cosegmentation

Joulin, Armand 17 December 2012 (has links) (PDF)
La simplicité apparente avec laquelle un humain perçoit ce qui l'entoure suggère que le processus impliqué est en partie mécanique, donc ne nécessite pas un haut degré de réflexion. Cette observation suggère que notre perception visuelle du monde peut être simulée sur un ordinateur. La vision par ordinateur est le domaine de recherche consacré au problème de la création d'une forme de perception visuelle pour des ordinateurs. La puissance de calcul des ordinateurs des années 50 ne permettait pas de traiter et d'analyser les données visuelles nécessaires à l'élaboration d'une perception visuelle virtuelle. Depuis peu, la puissance de calcul et la capacité de stockage ont permis à ce domaine de vraiment émerger. En deux décennies, la vision par ordinateur a permis de répondre à problèmes pratiques ou industrielles comme la détection des visages, de personnes au comportement suspect dans une foule ou de défauts de fabrication dans des chaînes de production. En revanche, en ce qui concerne l'émergence d'une perception visuelle virtuelle non spécifique à une tâche donnée, peu de progrès ont été réalisés et la communauté est toujours confrontée à des problèmes fondamentaux. Un de ces problèmes est de segmenter un stimuli optique ou une image en régions porteuses de sens, en objets ou actions. La segmentation de scène est naturelle pour les humains, mais aussi essentielle pour comprendre pleinement son environnement. Malheureusement elle est aussi extrêmement difficile à reproduire sur un ordinateur car il n'existe pas de définition claire de la région "significative''. En effet, en fonction de la scène ou de la situation, une région peut avoir des interprétations différentes. Etant donnée une scène se passant dans la rue, on peut considérer que distinguer un piéton est important dans cette situation, par contre ses vêtements ne le semblent pas nécessairement. Si maintenant nous considérons une scène ayant lieu pendant un défilé de mode, un vêtement devient un élément important, donc une région significative. Ici, nous nous concentrons sur ce problème de segmentation et nous l'abordons sous un angle particulier pour éviter cette difficulté fondamentale. Nous considérerons la segmentation comme un problème d'apprentissage faiblement supervisé, c'est-à-dire qu'au lieu de segmenter des images selon une certaine définition prédéfinie de régions "significatives'', nous développons des méthodes permettant de segmenter simultanément un ensemble d'images en régions qui apparaissent régulièrement. Nous définissons donc une région "significative'' d'un point de vue statistique: Ce sont les régions qui apparaissent régulièrement dans l'ensemble des images données. Pour cela nous concevons des modèles ayant une portée qui va au-delà de l'application à la vision. Notre approche prend ses racines dans l'apprentissage statistique, dont l'objectif est de concevoir des méthodes efficaces pour extraire et/ou apprendre des motifs récurrents dans des jeux de données. Ce domaine a récemment connu une forte popularité en raison de l'augmentation du nombre et de la taille des bases de données disponibles. Nous nous concentrons ici sur des méthodes conçues pour découvrir l'information "cachée'' dans une base à partir d'annotations incomplètes ou inexistantes. Enfin, nos travaux prennent racine dans le domaine de l'optimisation numérique afin d'élaborer des algorithmes efficaces et adaptés à nos problèmes. En particulier, nous utilisons et adaptons des outils récemment développés afin de relaxer des problèmes combinatoires complexes en des problèmes convexes pour lesquels il est garanti de trouver la solution optimale. Nous illustrons la qualité de nos formulations et algorithmes aussi sur des problèmes tirés de domaines autres que la vision par ordinateur. En particulier, nous montrons que nos travaux peuvent être utilisés dans la classification de texte et en biologie cellulaire.
10

Structured sparsity-inducing norms : statistical and algorithmic properties with applications to neuroimaging / Normes parcimonieuses structurées : propriétés statistiques et algorithmiques avec applications à l’imagerie cérébrale

Jenatton, Rodolphe 24 November 2011 (has links)
De nombreux domaines issus de l’industrie et des sciences appliquées ont été les témoins d’une révolution numérique. Cette dernière s’est accompagnée d’une croissance du volume des données, dont le traitement est devenu un défi technique. Dans ce contexte, la parcimonie est apparue comme un concept central en apprentissage statistique. Il est en effet naturel de vouloir exploiter les données disponibles via un nombre réduit de paramètres. Cette thèse se concentre sur une forme particulière et plus récente de parcimonie, nommée parcimonie structurée. Comme son nom l’indique, nous considérerons des situations où, au delà de la seule parcimonie, nous aurons également à disposition des connaissances a priori relatives à des propriétés structurelles du problème. L’objectif de cette thèse est d'analyser le concept de parcimonie structurée, en se basant sur des considérations statistiques, algorithmiques et appliquées. Nous commencerons par introduire une famille de normes structurées parcimonieuses dont les aspects statistiques sont étudiées en détail. Nous considérerons ensuite l’apprentissage de dictionnaires, où nous exploiterons les normes introduites précédemment dans un cadre de factorisation de matrices. Différents outils algorithmiques efficaces, tels que des méthodes proximales, seront alors proposés. Grâce à ces outils, nous illustrerons sur de nombreuses applications pourquoi la parcimonie structurée peut être bénéfique. Ces exemples contiennent des tâches de restauration en traitement de l’image, la modélisation hiérarchique de documents textuels, ou encore la prédiction de la taille d’objets à partir de signaux d’imagerie par résonance magnétique fonctionnelle. / Numerous fields of applied sciences and industries have been recently witnessing a process of digitisation. This trend has come with an increase in the amount digital data whose processing becomes a challenging task. In this context, parsimony, also known as sparsity, has emerged as a key concept in machine learning and signal processing. It is indeed appealing to exploit data only via a reduced number of parameters. This thesis focuses on a particular and more recent form of sparsity, referred to as structured sparsity. As its name indicates, we shall consider situations where we are not only interested in sparsity, but where some structural prior knowledge is also available. The goal of this thesis is to analyze the concept of structured sparsity, based on statistical, algorithmic and applied considerations. To begin with, we introduce a family of structured sparsity-inducing norms whose statistical aspects are closely studied. In particular, we show what type of prior knowledge they correspond to. We then turn to sparse structured dictionary learning, where we use the previous norms within the framework of matrix factorization. From an optimization viewpoint, we derive several efficient and scalable algorithmic tools, such as working-set strategies and proximal-gradient techniques. With these methods in place, we illustrate on numerous real-world applications from various fields, when and why structured sparsity is useful. This includes, for instance, restoration tasks in image processing, the modelling of text documents as hierarchy of topics, the inter-subject prediction of sizes of objects from fMRI signals, and background-subtraction problems in computer vision.

Page generated in 0.1726 seconds