Spelling suggestions: "subject:"approches bayésiennes"" "subject:"approches bayésienne""
1 |
Parallel magnetic resonance imaging reconstruction problems using wavelet representations / Problèmes de reconstruction en imagerie par résonance magnétique parallèle à l'aide de représentations en ondelettesChaari, Lotfi 05 November 2010 (has links)
Pour réduire le temps d'acquisition ou bien améliorer la résolution spatio-temporelle dans certaines application en IRM, de puissantes techniques parallèles utilisant plusieurs antennes réceptrices sont apparues depuis les années 90. Dans ce contexte, les images d'IRM doivent être reconstruites à partir des données sous-échantillonnées acquises dans le « k-space ». Plusieurs approches de reconstruction ont donc été proposées dont la méthode SENSitivity Encoding (SENSE). Cependant, les images reconstruites sont souvent entâchées par des artéfacts dus au bruit affectant les données observées, ou bien à des erreurs d'estimation des profils de sensibilité des antennes. Dans ce travail, nous présentons de nouvelles méthodes de reconstruction basées sur l'algorithme SENSE, qui introduisent une régularisation dans le domaine transformé en ondelettes afin de promouvoir la parcimonie de la solution. Sous des conditions expérimentales dégradées, ces méthodes donnent une bonne qualité de reconstruction contrairement à la méthode SENSE et aux autres techniques de régularisation classique (e.g. Tikhonov). Les méthodes proposées reposent sur des algorithmes parallèles d'optimisation permettant de traiter des critères convexes, mais non nécessairement différentiables contenant des a priori parcimonieux. Contrairement à la plupart des méthodes de reconstruction qui opèrent coupe par coupe, l'une des méthodes proposées permet une reconstruction 4D (3D + temps) en exploitant les corrélations spatiales et temporelles. Le problème d'estimation d'hyperparamètres sous-jacent au processus de régularisation a aussi été traité dans un cadre bayésien en utilisant des techniques MCMC. Une validation sur des données réelles anatomiques et fonctionnelles montre que les méthodes proposées réduisent les artéfacts de reconstruction et améliorent la sensibilité/spécificité statistique en IRM fonctionnelle / To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90's as powerful methods. In these techniques, MRI images have to be reconstructed from acquired undersampled « k-space » data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the observed data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve accurate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on fast parallel optimization algorithms dealing with convex but non-differentiable criteria involving suitable sparsity promoting priors. Moreover, in contrast with most of the available reconstruction methods which proceed by a slice by slice reconstruction, one of the proposed methods allows 4D (3D + time) reconstruction exploiting spatial and temporal correlations. The hyperparameter estimation problem inherent to the regularization process has also been addressed from a Bayesian viewpoint by using MCMC techniques. Experiments on real anatomical and functional data show that the proposed methods allow us to reduce reconstruction artifacts and improve the statistical sensitivity/specificity in functional MRI
|
2 |
Traitement statistique des distorsions non-linéaires pour la restauration des enregistrements sonores.Picard, Guillaume 12 1900 (has links) (PDF)
L'objet de la thèse est l'étude, la modélisation et le traitement des distorsions non linéaires sonores, pour lesquelles les techniques actuelles s'avèrent impuissantes. L'approche retenue consiste à représenter, globalement, à la fois le signal audio à restaurer et le processus de distorsion, dans le cadre d'un modèle statistique. Cette approche présente un bon compromis entre une souhaitable généricité -possibilité de traiter à l'aide d'une méthode globale plusieurs types de distorsions- et l'utilisation de connaissances spécifiques, notamment concernant les sources de distorsions. La première étape de la thèse consiste en une analyse des mécanismes de la distorsion basée sur une série de mesures où plusieurs séquences audio sont enregistrées en entrée et en sortie d'appareils audiofréquences standards (amplificateurs de puissance, convertisseurs numérique-analogique, enregistreurs sur bandes magnétiques). Les éléments d'analyse retenus conduisent à la présentation des hypothèses principales du traitement. La méthode est basée sur un modèle de transmission non-linéaire choisi parmi ceux étudiés dans la littérature (modèles en cascades de Hammerstein simple), ainsi qu'un modèle des signaux à restaurer (modélisation autorégressive et modèle gaussien à écart-type variable). La seconde étape définit d'une part, la méthode d'identification ``autodidacte'' (à partir de la donnée seule du signal distordu) du modèle de distorsion et d'autre part, la technique de reconstruction de l'extrait sonore associée aux modèles de distorsion et de signal.
|
3 |
Parallel magnetic resonance imaging reconstruction problems using wavelet representationsChaari, Lotfi 05 November 2010 (has links) (PDF)
Pour réduire le temps d'acquisition ou bien améliorer la résolution spatio-temporelle dans certaines application en IRM, de puissantes techniques parallèles utilisant plusieurs antennes réceptrices sont apparues depuis les années 90. Dans ce contexte, les images d'IRM doivent être reconstruites à partir des données sous-échantillonnées acquises dans le " k-space ". Plusieurs approches de reconstruction ont donc été proposées dont la méthode SENSitivity Encoding (SENSE). Cependant, les images reconstruites sont souvent entâchées par des artéfacts dus au bruit affectant les données observées, ou bien à des erreurs d'estimation des profils de sensibilité des antennes. Dans ce travail, nous présentons de nouvelles méthodes de reconstruction basées sur l'algorithme SENSE, qui introduisent une régularisation dans le domaine transformé en ondelettes afin de promouvoir la parcimonie de la solution. Sous des conditions expérimentales dégradées, ces méthodes donnent une bonne qualité de reconstruction contrairement à la méthode SENSE et aux autres techniques de régularisation classique (e.g. Tikhonov). Les méthodes proposées reposent sur des algorithmes parallèles d'optimisation permettant de traiter des critères convexes, mais non nécessairement différentiables contenant des a priori parcimonieux. Contrairement à la plupart des méthodes de reconstruction qui opèrent coupe par coupe, l'une des méthodes proposées permet une reconstruction 4D (3D + temps) en exploitant les corrélations spatiales et temporelles. Le problème d'estimation d'hyperparamètres sous-jacent au processus de régularisation a aussi été traité dans un cadre bayésien en utilisant des techniques MCMC. Une validation sur des données réelles anatomiques et fonctionnelles montre que les méthodes proposées réduisent les artéfacts de reconstruction et améliorent la sensibilité/spécificité statistique en IRM fonctionnelle
|
4 |
Modèles de graphes aléatoires à structure cachée pour l'analyse des réseauxLatouche, Pierre 03 December 2010 (has links) (PDF)
Les réseaux sont très largement utilisés dans de nombreux domaines scientifiques afin de représenter les interactions entre objets d'intérêt. Ainsi, en Biologie, les réseaux de régulation s'appliquent à décrire les mécanismes de régulation des gènes, à partir de facteurs de transcription, tandis que les réseaux métaboliques permettent de représenter des voies de réactions biochimiques. En sciences sociales, ils sont couramment utilisés pour représenter les interactions entre individus. Dans le cadre de cette thèse, nous nous intéressons à des méthodes d'apprentissage non supervisé dont l'objectif est de classer les noeuds d'un réseau en fonction de leurs connexions. Il existe une vaste littérature se référant à ce sujet et un nombre important d'algorithmes ont été proposés depuis les premiers travaux de Moreno en 1934. Notre point de départ est le modèle à blocs stochastiques, Stochastic Block Model (SBM) (Nowicki et Snijders, 2001) en anglais, qui permet la recherche de classes topologiques hétérogènes. Nous considérons un contexte Bayésien et proposons un algorithme de type variational Bayes pour approcher la loi a posteriori des paramètres. Cette approche permet d'obtenir un nouveau critère de sélection de modèles afin d'estimer le nombre de composantes dans un réseau. Par ailleurs, il apparaît que SBM ainsi que la plupart des modèles existants de classification sont limités puisqu'ils partitionnent les noeuds dans des classes disjointes. Or, de nombreux objets d'étude dans le cadre d'applications réelles sont connus pour appartenir à plusieurs groupes en même temps. Par exemple, en Biologie, des protéines appelées moonlighting proteins en anglais ont plusieurs fonctions dans les cellules. Nous introduisons donc un nouveau modèle de graphe aléatoire que nous appelons modèle à blocs stochastiques chevauchants, Overlapping Stochastic Block Model (OSBM) en anglais. Il autorise les noeuds d'un réseau à appartenir à plusieurs groupes simultanément et peut prendre en compte des topologies de connexion très différentes. Deux algorithmes d'estimation sont proposés ainsi qu'un critère de sélection de modèles.
|
5 |
Décompositions parcimonieuses : approches Bayésiennes et application à la compression d'imageDrémeau, Angélique 19 November 2010 (has links) (PDF)
Cette thèse s'intéresse à différentes techniques de compression d'image combinant à la fois des aspects Bayésiens et des aspects ”décompositions parcimonieuses”. Deux types de compression sont en particulier examinés. Le codage par transformation, d'abord, est traité sous l'angle de l'optimisation de la transformation. L'étude de bases prédéfinies puis apprises par un algorithme de la littérature constitue une introduction à la conception d'un nouvel algorithme d'apprentissage Bayésien, favorisant la parcimonie de la décomposition. Le codage prédictif ensuite est abordé. Inspiré de contributions récentes s'appuyant sur des décompositions parcimonieuses, un nouvel algorithme de prédiction Bayésien reposant sur un mélange de décompositions parcimonieuses est proposé. Enfin, ces travaux ont permis de mettre en évidence l'intérêt de structurer la parcimonie des décompositions. Par exemple, une pondération des atomes de la décomposition peut être envisagée via l'utilisation d'un modèle Bernoulli-Gaussien de paramètres différents. Ce modèle est considéré dans une dernière partie, pour le développement d'algorithmes de décompositions parcimonieuses.
|
6 |
Problèmes de reconstruction en Imagerie par Résonance Magnétique parallèle à l'aide de représentations en ondelettesChaari, Lotfi 05 November 2010 (has links) (PDF)
Pour réduire le temps d'acquisition ou bien améliorer la résolution spatio-temporelle dans certaines application en IRM, de puissantes techniques parallèles utilisant plusieurs antennes réceptrices sont apparues depuis les années 90. Dans ce contexte, les images d'IRM doivent être reconstruites à partir des données sous-échantillonnées acquises dans le "k-space". Plusieurs approches de reconstruction ont donc été proposées dont la méthode SENSitivity Encoding (SENSE). Cependant, les images reconstruites sont souvent entâchées par des artéfacts dus au bruit affectant les données observées, ou bien à des erreurs d'estimation des profils de sensibilité des antennes. Dans ce travail, nous présentons de nouvelles méthodes de reconstruction basées sur l'algorithme SENSE, qui introduisent une régularisation dans le domaine transformé en ondelettes afin de promouvoir la parcimonie de la solution. Sous des conditions expérimentales dégradées, ces méthodes donnent une bonne qualité de reconstruction contrairement à la méthode SENSE et aux autres techniques de régularisation classique (e.g. Tikhonov). Les méthodes proposées reposent sur des algorithmes parallèles d'optimisation permettant de traiter des critères convexes, mais non nécessairement différentiables contenant des a priori parcimonieux. Contrairement à la plupart des méthodes de reconstruction qui opèrent coupe par coupe, l'une des méthodes proposées permet une reconstruction 4D (3D + temps) en exploitant les corrélations spatiales et temporelles. Le problème d'estimation d'hyperparamètres sous-jacent au processus de régularisation a aussi été traité dans un cadre bayésien en utilisant des techniques MCMC. Une validation sur des données réelles anatomiques et fonctionnelles montre que les méthodes proposées réduisent les artéfacts de reconstruction et améliorent la sensibilité/spécificité statistique en IRM fonctionnelle.
|
7 |
Approches bayésiennes pour le pistage radar de cibles de surface potentiellement manoeuvrantes / Bayesian approaches for surface potentially-maneuvering target trackingMagnant, Clément 21 September 2016 (has links)
Dans le cadre de la surveillance maritime ou terrestre par radar aéroporté, l’un des principaux objectifs est de détecter et de poursuivre une grande diversité de cibles au cours du temps.Ces traitements s’appuient généralement sur l’utilisation d’un filtre Bayésien pour estimer récursivement les paramètres cinématiques (position, vitesse et accélération) des cibles. Il repose surla représentation dans l’espace d’état du système et plus particulièrement sur la modélisation a priori de l’évolution des cibles à partir d’un modèle de mouvement (mouvement rectiligne uniforme, mouvement uniformément accéléré, mouvement rotationnel, etc.). Si les cibles pistées sont manoeuvrantes, plusieurs modèles de mouvement, chacun avec une dynamique prédéfinie,sont classiquement combinés au sein d’une structure à modèles multiples. Même si ces approches s’avèrent pertinentes, des améliorations peuvent être apportées à plusieurs niveaux, notamment sur la manière de sélectionner et définir a priori les modèles utilisés.Dans ce contexte d’étude, plusieurs problématiques doivent être traitées.1/ Lors de l’utilisation d’une structure à modèles multiples, on considère en général deux à trois modèles. Ce choix est fait lors de la phase de conception de l’algorithme selon la connaissance du système et l’expertise de l’utilisateur. Cependant, il n’existe pas à notre connaissance d’outils ou de règles permettant de définir les types de mouvement à associer et leurs paramètres.2/ Il est préférable que le choix du ou des modèles de mouvement soit cohérent avec le type de cible pisté.3/ Lorsqu’un type de mouvement est utilisé, ses paramètres sont fixés a priori mais ces valeurs ne sont pas nécessairement adaptées à toutes les phases du mouvement. L’une des difficultés majeures réside dans la manière de définir et de faire évoluer la matrice de covariance du bruit de modèle. Le travail présenté dans ce mémoire vise à proposer des solutions algorithmiques aux problématiques précédentes afin d’améliorer l’estimation des trajectoires des cibles d’intérêt.Dans un premier temps, nous établissons une mesure de dissimilarité fondée sur la divergence de Jeffrey entre deux densités de probabilité associés à deux modèles d’état différents. Celle-ci est appliquée à la comparaison de modèles de mouvement. Elle est ensuite utilisée pour comparer un ensemble de plusieurs modèles d’état. Cette étude est alors mise à profit pour proposer une méthode de sélection a priori des modèles constituant des algorithmes à modèles multiples.Puis, nous présentons des modèles Bayésiens non-paramétriques (BNP) utilisant les processus de Dirichlet pour estimer les statistiques du bruit de modèle. Cette modélisation a l’avantage de pouvoir représenter des bruits multimodaux sans avoir à spécifier a priori le nombre de modes et leurs caractéristiques. Deux cas sont traités. Dans le premier, on estime la matrice de précision du bruit de modèle d’un unique modèle de mouvement sans émettre d’a priori sur sa structure.Dans le second, nous tirons profit des formes structurelles des matrices de précision associées aux modèles de mouvement pour n’estimer qu’un nombre réduit d’hyperparamètres. Pour les deux approches, l’estimation conjointe des paramètres cinématiques de la cible et de la matrice de précision du bruit de modèle est réalisée par filtrage particulaire. Les contributions apportées sont notamment le calcul de la distribution d’importance optimale dans chacun des cas.Enfin, nous tirons profit des méthodes dites de classification et pistage conjoints (joint tracking and classification -JTC-) pour mener simultanément la classification de la cible et l’inférence de ses paramètres. Dans ce cas, à chaque classe de cible est associé un ensemble de modèles d’évolution qui lui est propre. [...] / As part of the ground or maritime surveillance by using airborne radars, one of the mainobjectives is to detect and track a wide variety of targets over time. These treatments are generallybased on Bayesian filtering to estimate recursively the kinematic parameters (position,velocity and acceleration) of the targets. It is based on the state-space representation and moreparticularly on the prior modeling of the target evolutions (uniform motion, uniformly acceleratedmotion, movement rotational, etc.). If maneuvering targets are tracked, several motionmodels, each with a predefined dynamic, are typically combined in a multiple-model structure.Although these approaches are relevant, improvements can be made at several levels, includinghow to select and define a priori the models to be used.In this framework, several issues must be addressed.1 / When using a multiple-model structure, it is generally considered two to three models. Thischoice is made in the algorithm design stage according to the system knowledge and the userexpertise. However, it does not exist in our knowledge tools or/and rules to define the types ofmotions and their associated parameters.2 / It is preferable that the choice of the motion model(s) is consistent with the type of targetto be tracked.3 / When a type of motion model is used, its parameters are fixed a priori but these values ??arenot necessarily appropriate in all phases of the movement. One of the major challenges is theway to define the covariance matrix of the model noise and to model its evolution.The work presented in this thesis consists of algorithmic solutions to the previous problemsin order to improve the estimation of target trajectories.First, we establish a dissimilarity measure based on Jeffrey divergence between probability densitiesassociated with two different state models. It is applied to the comparison of motion models.It is then used to compare a set of several state models. This study is then harnessed to providea method for selecting a priori models constituting multiple-model algorithms.Then we present non-parametric Bayesian models (BNP) using the Dirichlet process to estimatemodel noise statistics. This model has the advantage of representing multimodal noises withoutspecifying a priori the number of modes and their features. Two cases are treated. In the firstone, the model noise precision matrix is estimated for a single motion model without issue ofany a priori on its structure. In the second one, we take advantage of the structural forms ofprecision matrices associated to motion models to estimate only a small number of hyperparameters.For both approaches, the joint estimation of the kinematic parameters of the target andthe precision matrix of the model noise is led by particle filtering. The contributions includecalculating the distribution optimal importance in each case.Finally, we take advantage of methods known as joint tracking and classification (JTC) forsimultaneously leading the classification of the target and the inference of its parameters. Inthis case, each target class is associated with a set of evolution models. In order to achievethe classification, we use the target position measurements and the target extent measurementscorresponding to the projection of the target length on the line of sight radar-target. Note that this approach is applied in a single target tracking context and a multiple-target environment.
|
8 |
Approche bayésienne de l'estimation des composantes périodiques des signaux en chronobiologie / A Bayesian approach for periodic components estimation for chronobiological signalsDumitru, Mircea 25 March 2016 (has links)
La toxicité et l’efficacité de plus de 30 agents anticancéreux présentent de très fortes variations en fonction du temps de dosage. Par conséquent, les biologistes qui étudient le rythme circadien ont besoin d’une méthode très précise pour estimer le vecteur de composantes périodiques (CP) de signaux chronobiologiques. En outre, dans les développements récents, non seulement la période dominante ou le vecteur de CP présentent un intérêt crucial, mais aussi leurs stabilités ou variabilités. Dans les expériences effectuées en traitement du cancer, les signaux enregistrés correspondant à différentes phases de traitement sont courts, de sept jours pour le segment de synchronisation jusqu’à deux ou trois jours pour le segment après traitement. Lorsqu’on étudie la stabilité de la période dominante nous devons considérer des signaux très court par rapport à la connaissance a priori de la période dominante, placée dans le domaine circadien. Les approches classiques fondées sur la transformée de Fourier (TF) sont inefficaces (i.e. manque de précision) compte tenu de la particularité des données (i.e. la courte longueur). Dans cette thèse, nous proposons une nouvelle méthode pour l’estimation du vecteur de CP des signaux biomédicaux, en utilisant les informations biologiques a priori et en considérant un modèle qui représente le bruit. Les signaux enregistrés dans le cadre d’expériences développées pour le traitement du cancer ont un nombre limité de périodes. Cette information a priori peut être traduite comme la parcimonie du vecteur de CP. La méthode proposée considère l’estimation de vecteur de CP comme un problème inverse enutilisant l’inférence bayésienne générale afin de déduire toutes les inconnues de notre modèle, à savoir le vecteur de CP mais aussi les hyperparamètres (i.e. les variances associées). / The toxicity and efficacy of more than 30 anticancer agents presents very high variations, depending on the dosing time. Therefore the biologists studying the circadian rhythm require a very precise method for estimating the Periodic Components (PC) vector of chronobiological signals. Moreover, in recent developments not only the dominant period or the PC vector present a crucial interest, but also their stability or variability. In cancer treatment experiments the recorded signals corresponding to different phases of treatment are short, from seven days for the synchronization segment to two or three days for the after treatment segment. When studying the stability of the dominant period we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier Transform (FT) methods are inefficient (i.e. lack of precision) considering the particularities of the data (i.e. the short length). In this thesis we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in the cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer all the unknowns of our model, i.e. the PC vector but also the hyperparameters.
|
9 |
Analyse de sensibilité fiabiliste avec prise en compte d'incertitudes sur le modèle probabiliste - Application aux systèmes aérospatiaux / Reliability-oriented sensitivity analysis under probabilistic model uncertainty – Application to aerospace systemsChabridon, Vincent 26 November 2018 (has links)
Les systèmes aérospatiaux sont des systèmes complexes dont la fiabilité doit être garantie dès la phase de conception au regard des coûts liés aux dégâts gravissimes qu’engendrerait la moindre défaillance. En outre, la prise en compte des incertitudes influant sur le comportement (incertitudes dites « aléatoires » car liées à la variabilité naturelle de certains phénomènes) et la modélisation de ces systèmes (incertitudes dites « épistémiques » car liées au manque de connaissance et aux choix de modélisation) permet d’estimer la fiabilité de tels systèmes et demeure un enjeu crucial en ingénierie. Ainsi, la quantification des incertitudes et sa méthodologie associée consiste, dans un premier temps, à modéliser puis propager ces incertitudes à travers le modèle numérique considéré comme une « boîte-noire ». Dès lors, le but est d’estimer une quantité d’intérêt fiabiliste telle qu’une probabilité de défaillance. Pour les systèmes hautement fiables, la probabilité de défaillance recherchée est très faible, et peut être très coûteuse à estimer. D’autre part, une analyse de sensibilité de la quantité d’intérêt vis-à-vis des incertitudes en entrée peut être réalisée afin de mieux identifier et hiérarchiser l’influence des différentes sources d’incertitudes. Ainsi, la modélisation probabiliste des variables d’entrée (incertitude épistémique) peut jouer un rôle prépondérant dans la valeur de la probabilité obtenue. Une analyse plus profonde de l’impact de ce type d’incertitude doit être menée afin de donner une plus grande confiance dans la fiabilité estimée. Cette thèse traite de la prise en compte de la méconnaissance du modèle probabiliste des entrées stochastiques du modèle. Dans un cadre probabiliste, un « double niveau » d’incertitudes (aléatoires/épistémiques) doit être modélisé puis propagé à travers l’ensemble des étapes de la méthodologie de quantification des incertitudes. Dans cette thèse, le traitement des incertitudes est effectué dans un cadre bayésien où la méconnaissance sur les paramètres de distribution des variables d‘entrée est caractérisée par une densité a priori. Dans un premier temps, après propagation du double niveau d’incertitudes, la probabilité de défaillance prédictive est utilisée comme mesure de substitution à la probabilité de défaillance classique. Dans un deuxième temps, une analyse de sensibilité locale à base de score functions de cette probabilité de défaillance prédictive vis-à-vis des hyper-paramètres de loi de probabilité des variables d’entrée est proposée. Enfin, une analyse de sensibilité globale à base d’indices de Sobol appliqués à la variable binaire qu’est l’indicatrice de défaillance est réalisée. L’ensemble des méthodes proposées dans cette thèse est appliqué à un cas industriel de retombée d’un étage de lanceur. / Aerospace systems are complex engineering systems for which reliability has to be guaranteed at an early design phase, especially regarding the potential tremendous damage and costs that could be induced by any failure. Moreover, the management of various sources of uncertainties, either impacting the behavior of systems (“aleatory” uncertainty due to natural variability of physical phenomena) and/or their modeling and simulation (“epistemic” uncertainty due to lack of knowledge and modeling choices) is a cornerstone for reliability assessment of those systems. Thus, uncertainty quantification and its underlying methodology consists in several phases. Firstly, one needs to model and propagate uncertainties through the computer model which is considered as a “black-box”. Secondly, a relevant quantity of interest regarding the goal of the study, e.g., a failure probability here, has to be estimated. For highly-safe systems, the failure probability which is sought is very low and may be costly-to-estimate. Thirdly, a sensitivity analysis of the quantity of interest can be set up in order to better identify and rank the influential sources of uncertainties in input. Therefore, the probabilistic modeling of input variables (epistemic uncertainty) might strongly influence the value of the failure probability estimate obtained during the reliability analysis. A deeper investigation about the robustness of the probability estimate regarding such a type of uncertainty has to be conducted. This thesis addresses the problem of taking probabilistic modeling uncertainty of the stochastic inputs into account. Within the probabilistic framework, a “bi-level” input uncertainty has to be modeled and propagated all along the different steps of the uncertainty quantification methodology. In this thesis, the uncertainties are modeled within a Bayesian framework in which the lack of knowledge about the distribution parameters is characterized by the choice of a prior probability density function. During a first phase, after the propagation of the bi-level input uncertainty, the predictive failure probability is estimated and used as the current reliability measure instead of the standard failure probability. Then, during a second phase, a local reliability-oriented sensitivity analysis based on the use of score functions is achieved to study the impact of hyper-parameterization of the prior on the predictive failure probability estimate. Finally, in a last step, a global reliability-oriented sensitivity analysis based on Sobol indices on the indicator function adapted to the bi-level input uncertainty is proposed. All the proposed methodologies are tested and challenged on a representative industrial aerospace test-case simulating the fallout of an expendable space launcher.
|
10 |
Analyse et modélisation de l'effet de l'Interleukine 7 chez les patients infectés par le VIH / Analysing and modeling the effect of interleukin 7 in HIV-infected patientsVillain, Laura 13 December 2018 (has links)
Chez les patients infectés par le VIH, les traitements antirétroviraux empêchent la réplicationvirale, ce qui est suivi, dans la plupart des cas, par une restauration de la population des lymphocytesT CD4+ (CD4). Néanmoins ce n’est pas le cas pour certains patients appelés patients àfaible réponse immunitaire. Des injections d’interleukine-7 (IL7) exogène, une cytokine impliquéedans l’homéostasie des CD4, sont considérées afin de maintenir les taux de CD4 au-dessus de500 cellules par μL, taux au-dessus duquel les patients ont une espérance de vie comparable auxpersonnes non infectées par le VIH. Les essais INSPIRE ont évalué l’effet d’injections répétéesd’IL7 chez les patients à faible réponse immunologique.Nous présentons plusieurs modèles mécanistes de l’effet des injections d’IL7 sur les CD4, quiincluent des effets aléatoires afin de tenir compte de la variabilité inter-individuelle. En utilisantces modèles avec une approche Bayésienne, les paramètres individuels d’un nouveau patient sontéchantillonnés, ce qui nous permet de faire des prédictions sur sa dynamique de CD4 et donc depersonnaliser le traitement. Nous proposons quatre protocoles adaptatifs permettant de limiter letemps passé sous 500 CD4 par μL, sans pour autant augmenter le nombre d’injections. Ces protocolesont été implémentés dans une application Shiny présentant une interface facile d’utilisation,et pourront être testés lors d’essais cliniques.Le réservoir viral, principalement constitué de CD4 quiescentes infectées, est la première barrièreà l’éradication du VIH. Les injections d’IL7 entrainent une augmentation du nombre deCD4 et donc du réservoir viral ; la question est alors de savoir si les injections provoquent denouvelles infections cellulaires ou si le réservoir augmente de la même façon que les CD4. Nousconcluons que si quelques patients ont présenté des dynamiques de marqueurs compatibles avecla survenue de nouvelles infections de cellules, ce n’est pas le cas de la majorité des patients. Laconfirmation de ces phénomènes et la caractérisation de potentiels patients à risque nécessite desdonnées supplémentaires mesurables dans un essai clinique. / In HIV infected patients, antiretroviral therapy suppresses the viral replication which is followedin most patients by a restoration of the CD4+ T cells (CD4) pool. However, it is not the case forsome patients called low immunological responders. Injections of interleukin-7 (IL7), a cytokineinvolved in the CD4 homeostasis, are considered in order to maintain the CD4 levels above 500cells per μL, the level at which life expectancy is similar to that of the non-infected. INSPIREtrials evaluated the effect of repeated injections of IL7 on low immunological responders.We present a few mechanistic models of the effect of IL7 injections on CD4, which includerandom effects to account for inter-individual variability. Using these models with a Bayesianapproach, the individual parameters of a new patient are sampled, which allows us to makepredictions about its CD4 dynamics and thus to personalize the treatment. We propose fouradaptive protocols that limit the time spent under 500 CD4 per μL, without increasing thenumber of injections. Those protocols are implemented into a Shiny app with an easy to useinterface, and they could be tested during clinical trials.The viral reservoir, mainly made up of quiescent infected CD4, is the main obstacle to HIVeradication. IL7 injections induce an increase of the level of CD4, hence of the viral reservoir ; thequestion is then to determine if the injections induce new cell infections or if the reservoir increasesin the same way as CD4. We conclude that while some patients presented marker dynamicsconsistent with the occurrence of new cell infections, this is not the case for the majority ofpatients. Confirmation of these events and characterization of potential at-risk patients requiresadditional measurable data in a clinical trial.
|
Page generated in 0.0851 seconds