• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 3
  • 3
  • 2
  • Tagged with
  • 33
  • 14
  • 10
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chronobiologische Aspekte in der Frauenheilkunde : über Einflüsse von Mondphasen, Jahreszeiten und Geburtsdatum /

Prinz, Joachim. January 1997 (has links)
Teilw. zugl.: Heidelberg, Universiẗat, Diss.
2

Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice / Auf das richtige Timing kommt es an: Die Interaktion zwischen psychosozialem Stress und der inneren Uhr in männlichen C57BL/6 Mäusen

Bartlang, Manuela Slavica January 2014 (has links) (PDF)
Due to the rotation of the earth in the solar system all inhabitants of our planet are exposed to regular environmental changes since more than 3.5 billion years. In order to anticipate these predictable changes in the environment, evolutionarily conserved biological rhythms have evolved in most organisms – ranging from ancient cyanobacteria up to human beings – and also at different levels of organization – from single cells up to behavior. These rhythms are endogenously generated by so called circadian clocks in our body and entrained to the 24 h cycle by external timing cues. In multi-cellular organisms the majority of the cells in the body is equipped with such an oscillator. In mammals, the circadian system is structured in a hierarchical fashion: A central pacemaker resides in the bilateral suprachiasmatic nucleus (SCN) of the hypothalamus, while subsidiary peripheral clocks exist in nearly every tissue and organ. In contrast to the aforementioned recurrent environmental changes most organisms are also exposed to unpredictable changes in the environment. In order to adapt to these sudden alterations the acute activation of the stress response system, involving the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, displays a fundamental survival mechanism. However, if activation of the stress system becomes chronic, devastating somatic and affective disorders might be the consequence. At first glance, the circadian and the stress system seem to represent two separate bodily control systems that are involved in adaptation to predictable and unpredictable stimuli, respectively. However, both systems are fundamental for survival, and thus, communicate with each other at various levels. Early studies already demonstrated that stressor exposure at different times of the diurnal cycle generates different stress effects, whereupon the type of stressor plays a pivotal role. Moreover, alterations in the SCN and peripheral circadian clocks could be shown following stressor exposure. In cooperation with various co-workers, I investigated whether the stress responsiveness is modulated by the endogenous clock in a diurnal fashion and whether repeated psychosocial stress impacts the circadian clock depending on the time of day of stressor exposure. Therefore, male C57BL/6 mice were repeatedly exposed to a psychosocial stressor, either at the beginning of the inactive/light phase (SDL mice) or active/dark phase (SDD mice). Subsequently, different behavioral, physiological/endocrine and immunological/ inflammatory consequences were assessed. It could be shown that the effects of repeated psychosocial stressor exposure strongly depend on the time of day of stressor exposure. The present results demonstrate that repeated daily stressor exposure has a more negative outcome when applied during the active/dark phase compared to the inactive/light phase. Stressor exposure during the active phase resulted in a loss of general activity, decreased interest in an unfamiliar conspecific, a shift towards a more pro-inflammatory body milieu, and rhythm disturbances in plasma hormones, all representing well-accepted hallmarks of depression. In contrast, C57BL/6 mice exposed to the stressor in their inactive phase exhibited minor physiological alterations that might prevent the formation of the maladaptive consequences mentioned above, thus representing beneficial adaptations. The second focus of this thesis was put on the investigation of the effects of repeated psychosocial stressor exposure at different times of the light-dark cycle on various levels of the circadian system. An increased expression of the PERIOD2 (PER2) protein, which represents an essential core clock component, could be found in the SCN of mice repeatedly exposed to the stressor during their active phase. In consistence with the alterations in the central circadian pacemaker, the daily rhythm of different hormones and the activity rhythm were considerably affected by SDD. Mice exposed to the psychosocial stressor in their active phase showed a shifted, or absent, rhythm of the hormones corticosterone and leptin. Moreover, their activity was found to be phase-delayed, which seems to be attributable to the Period (Per) gene since Per1/Per2 double-mutants still exhibited their normal activity rhythm following 19 days of stressor exposure during the active phase. In contrast, a phase-advance in the peripheral adrenal gland clock could be seen in C57BL/6 mice subjected to the stressor during their inactive phase. This phase-shift might be required for maintaining the normal rhythmicity in hormonal release and activity. It has previously been suggested that activation of the HPA axis upon stressor exposure at different times of the light-dark cycle is depending on whether the stressor is of physical or psychological nature. Data from the HPA axis analysis now refine previous findings, indicating that psychosocial stressors also modulate HPA axis responses based on the time of day of stressor presentation. The present results demonstrate that HPA axis activity was reduced following repeated stressor exposure during the active phase. It is reasonable to speculate that this reduced basal activity of the stress system represents a failure in HPA axis adjustment, which could contribute to the negative consequences of repeated psychosocial stressor exposure during the dark phase. Taken together, it can be concluded that the endogenous clock in mice modulates the stress responsiveness in a circadian fashion and that repeated psychosocial stressor exposure affects the biological clock depending on the time of day of stressor presentation. Thereby, stressor exposure during the active phase results in a more negative outcome as compared to stressor experience during the inactive phase. It is assumed that the interaction between the circadian clock and the stress system is a complex issue that might ensure that the endogenous clock does not get out of synchrony in any order. / Aufgrund der Bewegung der Erde in unserem Sonnensystem sind alle Lebewesen auf unserem Planeten seit mehr als 3,5 Milliarden Jahren tagesperiodischen Veränderungen der Umweltbedingungen ausgesetzt. In Anpassung an diese zeitlichen Abläufe haben sich im Laufe der Evolution bei fast allen Organismen – vom Bakterium bis hin zum Menschen – und auf verschiedenen Ebenen – von der Zellebene bis zum Verhalten – biologische Rhythmen entwickelt, die von endogenen Uhren im Körper und äußeren Zeitgebern gesteuert werden. Bei vielzelligen Organismen besitzen nahezu alle Zelltypen ihren eigenen Oszillator. In Säugetieren ist das zirkadiane System hierarchisch strukturiert. Der zentrale Schrittmacher der inneren Uhr befindet sich im bilateralen suprachiasmatischen Nukleus (SCN) des Hypothalamus, während untergeordnete periphere Taktgeber in beinahe jedem Gewebe und Organ oszillieren. Im Gegensatz zu den oben erwähnten regelmäßig wiederkehrenden Veränderungen der Umweltbedingungen sind die meisten Lebewesen ebenso unvorhersehbaren und raschen Umweltveränderungen ausgesetzt. In Anpassung an derartig plötzlich wechselnde Reizbedingungen ist die kurzfristige Aktivierung des Stress-Systems, bestehend aus der Hypothalamus-Hypophysen-Nebennieren-Achse (hypothalamic-pituitary-adrenal axis, HPA axis) und dem sympathischen Nervensystem, für eine adaptive Reaktion essentiell und sogar lebensnotwendig. Im Gegensatz dazu zählt eine andauernde/chronische Aktivierung des Stress-Systems zu den Risikofaktoren für eine Reihe von somatischen und affektiven Erkrankungen. Obwohl das zirkadiane System und das Stress-System auf den ersten Blick zwei verschiedene körperliche Anpassungssysteme darstellen, kommt es auf mehreren Ebenen zum wechselseitigen Einfluss. Es wurde bereits in früheren Arbeiten gezeigt, dass eine Stressorexposition zu unterschiedlichen Tageszeiten verschiedene Effekte hervorruft, wobei die Natur des Stressors dabei eine entscheidende Rolle spielt. Des Weiteren konnten Veränderungen im SCN und peripheren zirkadianen Uhren als Folge einer Stressorexposition aufgezeigt werden. In Zusammenarbeit mit verschiedenen Kollegen wurde im Rahmen dieser Doktorarbeit untersucht, ob die endogene Uhr die Stressempfindlichkeit tageszeitabhängig moduliert und ob wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Männliche C57BL/6 Mäuse wurden daher entweder zu Beginn der inaktiven/Licht-Phase (SDL Mäuse) oder der aktiven/Dunkel-Phase (SDD Mäuse) wiederholt einem psycho-sozialem Stressor ausgesetzt. Im Anschluss wurden verschiedene Verhaltensweisen sowie physio¬logische/endo-krine und immunologische/inflammatorische Konsequenzen untersucht. Es konnte gezeigt werden, dass die Effekte wiederholter Stressorexposition auf das Verhalten, die Physiologie und die Immunologie deutlich von der Tageszeit der Stressorexposition abhängt. Die gewonnenen Ergebnisse zeigen, dass wiederholte Stressor¬exposition während der aktiven/Dunkel-Phase negativere Konsequenzen nach sich zieht als die Stressorexposition während der inaktiven/Licht-Phase. Wurden C57BL/6 Mäuse dem psychosozialen Stressor während ihrer aktiven Phase ausgesetzt, führte dies zu typischen Symptomen von depressiven Patienten wie z.B. einer Verringerung der Aktivität und des sozialen Erkundungsverhaltens, Entzündungserscheinungen, sowie Veränderungen in hormonalen Rhythmen im Plasma. Im Gegensatz dazu wiesen C57BL/6 Mäuse, die dem Stressor in ihrer inaktiven Phase begegneten, geringfügige physiologische Veränderungen auf, welche die Entstehung der oben genannten negativen Konsequenzen verhindern und somit positive Adaptationen darstellen könnten. Des Weiteren wurden in dieser Arbeit die Effekte wiederholter Stressorexposition zu unterschiedlichen Tageszeiten auf verschiedene Ebenen des zirkadianen Systems untersucht. Es konnte eine erhöhte Expression des PERIOD2 (PER2) Proteins, das einen essentiellen Bestandteil des zirkadianen Uhrenmechanismus darstellt, im SCN nach wiederholter Stressorexposition während der aktiven Phase festgestellt werden. Die Veränderung im zentralen Schrittmacher spiegelte sich auch in der Tagesrhythmik verschiedener Hormone sowie im rhythmischen Verhalten der Tiere wider. SDD Mäuse zeigten dabei einen verschobenen oder fehlenden Rhythmus in den Hormonen Corticosteron und Leptin. Des Weiteren war die Aktivität nach 19-tägiger Stressorexposition zu Beginn der aktiven Phase deutlich nach hinten verschoben. Dabei kommt dem Period (Per) Gen eine zentrale Bedeutung zu, da SDD Per1/Per2 Doppelmutanten keinen veränderten Aktivitätsrhythmus aufwiesen. Eine verfrühte Phasenlage der peripheren Uhr in der Nebenniere zeigte sich hingegen in C57BL/6 Mäusen, die dem Stressor während ihrer inaktiven Tageszeit ausgesetzt wurden. Diese Phasenverschiebung nach vorne könnte für die Aufrechterhaltung der Rhythmik im Verhalten und in der Hormonausschüttung eine Rolle spielen. Vorangehende Arbeiten wiesen bereits darauf hin, dass die HPA-Achsen-Aktivierung infolge einer Stressorexposition zu unterschiedlichen Tageszeiten davon abhängt, ob der Stressor von physischer oder psychologischer Natur ist. Die Ergebnisse der vorliegenden Arbeit erweitern die bestehenden Erkenntnisse insofern, als dass die HPA-Achsen-Antwort auch von psychosozialen Stressoren tageszeitabhängig beeinflusst wird. Die HPA-Achsen-Analyse dieser Arbeit zeigte eine verringerte Aktivität der Stressachse nach wiederholter Stressorexposition zu Beginn der aktiven Phase. Mit großer Wahrscheinlichkeit stellt diese Verringerung der basalen HPA-Achsen-Aktivität eine dysfunktionale Überadjustierung dar, die zu den negativen Konsequenzen in Folge der Stressorexposition während der aktiven Phase beitragen könnte. Zusammenfassend lässt sich sagen, dass die endogene Uhr in Mäusen die Stressempfindlichkeit tageszeitabhängig moduliert und dass wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Dabei zieht die Stressorexposition während der aktiven Phase weitaus negativere Konsequenzen nach sich als die Stressor¬exposition in der inaktiven Phase. Aus den Daten kann geschlossen werden, dass die Wechselwirkung von der inneren Uhr und dem Stress-System einen komplexen Sachverhalt darstellt, der gewährleisten soll, dass die innere Uhr nicht beliebig aus dem Takt geraten kann.
3

The impact of thermogenetic depolarizations of specific clock neurons on Drosophila melanogaster's circadian clock / Der Einfluss thermogenetischer Depolarisationen spezifischer Uhrneurone auf Drosophila melanogasters circadiane Uhr

Eck, Saskia January 2016 (has links) (PDF)
The rotation of the earth around its own axis determines periodically changing environmental conditions, like alterations in light and temperature. For the purpose of adapting all organisms’ behavior, physiology and metabolism to recurring changes, endogenous clocks have evolved, which allow the organisms to anticipate environmental changes. In chronobiology, the scientific field dealing with the investigation of the underlying mechanisms of the endogenous clock, the fruit fly Drosophila melanogaster serves as a beneficial model organism. The fruit fly’s circadian clock exhibits a rather simple anatomical organization, but nevertheless constitutes homologies to the mammalian system. Thus also in this PhD-thesis the fruit fly was used to decipher general features of the circadian clock’s interneuronal communication. Drosophila melanogaster’s circadian clock consists of about 150 clock neurons, which are located in the central nervous system of the fly. These clock neurons can be subdivided regarding to their anatomical position in the brain into the dorsal neurons (DN1s, DN2s, DN3s), as well as into the lateral neurons (LPNs, LNds, s-LNvs, l-LNvs). Functionally these clock neuron clusters can be classified as Morning- and Evening oscillators (M- and E- oscillators), driving different parts of the fly’s locomotor activity in light-dark conditions (LD). The Morning-oscillators are represented by the s-LNvs and are known to be the main pacemakers, driving the pace of the clock in constant conditions (constant darkness; DD). The group of Evening-oscillators consists of the LNds, the DN1s and the 5th s-LNv and is important for the proper timing of the evening activity in LD. All of these clock neurons are not functionally independent, but form complex neuronal connections, which are highly plastic in their response to different environmental stimuli (Zeitgebers), like light or temperature. Even though a lot is known about the function and the importance of some clock neuron clusters, the exact interplay between the neurons is not fully known yet. To investigate the mechanisms, which are involved in communication processes among different clock neurons, we depolarized specific clock cells in a temporally and cell-type restricted manner using dTrpA1, a thermosensitive cation channel, which allows the depolarization of neurons by application of temperature pulses (TP) above 29°C to the intact and freely moving fly. Using different clock specific GAL4-driver lines and applying TPs at different time points within the circadian cycle in DD enabled us with the help of phase shift experiments to draw conclusions on the properties of the endogenous clock. The obtained phase shifts in locomotor behavior elicited by specific clock neuronal activation were plotted as phase response curves (PRCs). The depolarization of all clock neurons shifted the phase of activity the strongest, especially in the delay zone of the PRC. The exclusive depolarization of the M oscillators together with the l-LNvs (PDF+ neurons: s-LNvs & l-LNvs) caused shifts in the delay and in the advance zone as well, however the advances were severely enhanced in their temporal occurrence ranging into the subjective day. We concluded that light might have inhibitory effects on the PDF+ cells in that particular part of the PRC, as typical light PRCs do not exhibit that kind of distinctive advances. By completely excluding light in the PRC-experiments of this PhD-thesis, this photic inhibitory input to the PDF+ neurons is missing, probably causing the broadened advance zone. These findings suggest the existence of an inhibitory light-input pathway to the PDF+ cells from the photoreceptive organs (Hofbauer-Buchner eyelet, photoreceptor cells of compound eyes, ocelli) or from other clock neurons, which might inhibit phase advances during the subjective day. To get an impression of the molecular state of the clock in the delay and advance zone, staining experiments against Period (PER), one of the most important core clock components, and against the neuropeptide Pigment Dispersing Factor (PDF) were performed. The cycling of PER levels mirrored the behavioral phase shifts in experimental flies, whereas the controls were widely unaffected. As just those neurons, which had been depolarized, exhibited immediate shifted PER oscillations, this effect has to be rapidly regulated in a cell-autonomous manner. However, the molecular link between clock neuron depolarization and shifts in the molecular clock’s cycling is still missing. This issue was addressed by CREB (cAMP responsive element binding protein) quantification in the large ventrolateral neurons (l-LNvs), as these neurons responded unexpectedly and strongest to the artificial depolarization exhibiting a huge increase in PER levels. It had been previously suggested that CREB is involved in circadian rhythms by binding to regulatory sequences of the period gene (Belvin et al., 1999), thus activating its transcription. We were able to show, that CREB levels in the l-LNvs are under circadian regulation, as they exhibit higher CREB levels at the end of the subjective night relative to the end of the subjective day. That effect was further reinforced by artificial depolarization, independently of the time point of depolarization. Furthermore the data indicate that rises in CREB levels are coinciding with the time point of increases of PER levels in the l-LNvs, suggesting CREB being the molecular link between the neuronal electrical state and the molecular clock. Taking together, the results indicate that a temporal depolarization using dTrpA1 is able to significantly phase shift the clock on the behavioral and protein level. An artificial depolarization at the beginning of the subjective night caused phase delays, whereas a depolarization at the end of the subjective night resulted in advances. The activation of all clock neurons caused a PRC that roughly resembled a light-PRC. However, the depolarization of the PDF+ neurons led to a PRC exhibiting a shape that did not resemble that of a light-mediated PRC, indicating the complex processing ability of excitatory and inhibitory input by the circadian clock. Even though this experimental approach is highly artificial, just the exclusion of light-inputs enabled us to draw novel conclusions on the network communication and its light input pathways. / Die Rotation der Erde um ihre eigene Achse hat periodisch verändernde Umweltbedingungen, wie beispielsweise Veränderungen in den Lichtverhältnissen und der Temperatur, zur Folge. Um das Verhalten, die Physiologie und den Metabolismus eines Organismus an stets wiederkehrende Veränderungen anzupassen, haben sich endogene/circadiane Uhren entwickelt, die es dem Organismus erlauben diese Umweltbedingungen zu antizipieren. In der Chronobiologie, einem wissenschaftlichen Fachbereich, der sich mit der Untersuchung der zugrunde liegenden Mechanismen der Inneren Uhr befasst, dient die Taufliege Drosophila melanogaster als nützlicher Modellorganismus. Die Innere Uhr der Taufliege ist anatomisch eher einfach organisiert, weist trotz alledem jedoch Homologien zum Säugersystem auf. Auch im Rahmen dieser Doktorarbeit diente die Taufliege daher dazu grundlegende Netzwerkeigenschaften der circadianen Uhr zu untersuchen. Die Innere Uhr von Drosophila melanogaster besteht aus ungefähr 150 Uhrneuronen, die sich im zentralen Nervensystem der Fliege befinden. Diese Uhrneurone können, bezüglich ihrer anatomischen Position im Gehirn in die Gruppe der dorsalen Neurone (DN1, DN2, DN3), sowie in die der lateralen Neurone untergliedert werden (LPN, LNd, s-LNv, l-LNv). Funktionell werden diese Uhrneuronengruppen als Morgen- und Abendoszillatoren (M- und E-Oszillatoren) klassifiziert, da sie für unterschiedliche Verhaltensanteile in der Laufaktivität der Fliege unter Licht-Dunkel-Verhältnissen (LD) verantwortlich sind. Die s-LNv stellen dabei die Morgenoszillatoren (M-Oszillatoren) dar und werden als Hauptschrittmacher betrachtet, da sie die Geschwindigkeit der Uhr unter konstanten Bedingungen (Dauerdunkel; DD) bestimmen. Die Gruppe der Abendoszillatoren (EOszillatoren) besteht aus den LNd, einigen DN1 und der fünften s-LNv (5th s-LNv) und ist für die richtige Terminierung der Abendaktivität in LD zuständig. All diese Uhrneurone sind funktionell nicht unabhängig voneinander, sondern bilden komplexe neuronale Verschaltungen untereinander aus, die durch einen hohen Grad an Plastizität bezüglich ihrer Reaktion auf unterschiedliche Umweltparameter (Zeitgeber), wie Licht oder Temperatur, gekennzeichnet sind. Obwohl bereits vieles hinsichtlich der Funktion und der Bedeutung einiger Gruppen von Uhrneuronen bekannt ist, ist das genaue Zusammenspiel unter ihnen immer noch recht unklar. Um die Mechanismen, die in den Kommunikationsprozessen zwischen verschiedenen Uhrneuronen involviert sind, zu untersuchen, machten wir Gebrauch von dTrpA1, einem thermosensitiven Kationenkanal, der es durch die Applizierung von Temperaturpulsen (TP) über 29°C ermöglicht, Neuronen in der intakten und sich frei bewegenden Fliege zeitlich begrenzt und zellspezifisch zu depolarisieren. Mithilfe verschiedener Uhr-spezifischer GAL4-Treiberlinien und der Verabreichung von TP zu verschiedenen Zeitpunkten des circadianen Zyklus in DD, war es uns möglich Rückschlüsse auf die Eigenschaften der Inneren Uhr anhand von Phasen-Verschiebungsexperimenten zu ziehen. Die hervorgerufenen Phasenverschiebungen im Laufverhalten, die durch die Aktivierung spezieller Uhrneuronen hervorgerufen wurden, wurden dabei als Phasen Responz Kurve (engl. phase response curve; PRC) dargestellt. Die Depolarisierung aller Uhrneurone verschob die Phase der Aktivität am stärksten, insbesondere in der Phasen-Verzögerungszone der PRC. Wurden ausschließlich die M-Oszillatoren zusammen mit den l-LNv (PDF+ Neurone: s-LNv & l-LNv) depolarisiert, wurden ebenso Phasenverschiebungen nach vorne, wie auch nach hinten hervorgerufen, jedoch reichten die Verschiebungen nach vorne deutlich in den subjektiven Tag hinein. Daraus schlussfolgerten wir, dass Licht inhibitorischen Einfluss in diesem Bereich der PRC haben muss, da typische Licht-PRCs nicht derart ausgeprägte Vorverschiebungen aufweisen. Aufgrund des vollständigen Lichtausschlusses in den PRC-Versuchen dieser Doktorarbeit fehlt jedoch dieser Licht-vermittelte inhibitorische Einfluss zu den PDF+ Neuronen und führt daher zur zeitlich stark ausgeprägten Phasen-Vorverschiebungszone. Diese Ergebnisse lassen daher vermuten, dass ein inhibitorisch wirkender Licht-vermittelter Eingang zu den PDF+ Neuronen von den photorezeptiven Organen (Hofbauer-Buchner Äuglein, Photorezeptoren der Komplexaugen, Ocellen) oder von anderen Uhrneuronen existieren muss, der die Phasen-Vorverschiebungen während des subjektiven Tages unterdrückt. Um Kenntnis über den molekularen Status der Uhr in der Verzögerungs- und Phasen-Vorverschiebungszone zu erlangen, wurden Färbungen gegen das Protein Period (PER), eines der zentralen Bestandteile der Inneren Uhr und gegen das Neuropeptid Pigment Dispersing Factor (PDF) angefertigt. Der zeitliche Verlauf im Auf- und Abbau des PER Proteins spiegelte die Phasenverschiebungen im Verhalten der Experimentalfliegen wider, wohingegen die Kontrollen weitestgehend unauffällig blieben. Zudem waren nur diejenigen Neurone von einer unmittelbaren Verschiebung der PER Protein Oszillation betroffen, die depolarisiert wurden, was auf einen schnellen Zell-autonomen Prozess schließen lässt. Die molekulare Verknüpfung, die zwischen der Depolarisation der Uhrneuronen und der Verschiebung der molekularen Uhr-Oszillation fungiert, ist immer noch unbekannt. Diesem Thema wurde nachgegangen, indem CREB (engl. cAMP responsive element binding protein) in den großen ventrolateralen Neuronen (l-LNv) quantifiziert wurde, da diese Neuronen unerwarteterweise und am wirksamsten auf die artifizielle Depolarisation mit einer starken PER-Akkumulation reagiert haben. In vorherigen Arbeiten wurde bereits angenommen, dass CREB in die circadiane Rhythmik involviert sei, indem es an Regulationssequenzen des period Gens bindet (Belvin et al., 1999) und somit dessen Transkription aktiviert. Wir konnten zeigen, dass die Menge an CREB Protein in den l-LNv circadian reguliert wird, da diese am Ende der subjektiven Nacht im Vergleich zum Ende des subjektiven Tages deutlich erhöht ist. Dieser Effekt konnte durch die artifizielle Depolarisation, aber unabhängig von deren Zeitpunkt, weiter verstärkt werden. Zudem deuten die Ergebnisse darauf hin, dass die Akkumulation des CREB Proteins mit dem Zeitpunkt des Anstiegs des PER Proteins in den l-LNv koinzidiert. Das lässt die Vermutung zu, dass CREB als molekulare Verbindung zwischen dem elektrischen neuronalen Status und der molekularen Uhr dienen kann. Zusammenfassend lässt sich sagen, dass die zeitlich begrenzte Depolarisation mithilfe von dTrpA1 signifikante Phasenverschiebungen im Verhalten wie auch auf der Proteinebene hervorrufen kann. Eine artifizielle Depolarisation zu Beginn der subjektiven Nacht verursacht Phasenverschiebungen nach hinten, wohingegen eine Depolarisation zum Ende der subjektiven Nacht Phasenverschiebungen nach vorne zur Folge hat. Die Aktivierung aller Uhrneurone brachte eine PRC hervor, die weitestgehend einer Licht-PRC gleicht. Die Depolarisierung der PDF+ Zellen hingegen ergab eine PRC, die sich insbesondere bezüglich der ausgeprägten Phasen-Vorverschiebungszone von einer Licht-vermittelten PRC unterscheidet. Die Innere Uhr scheint somit die Fähigkeit zu besitzen, exzitatorische und inhibitorische Eingänge in komplexer Art und Weise zu verarbeiten. Obwohl der in dieser Doktorarbeit gewählte experimentelle Ansatz hochgradig artifiziell ist, war es uns gerade durch den Ausschluss von Licht möglich, neue Schlussfolgerungen bezüglich der Kommunikation innerhalb des Netzwerks und dessen Lichtinformations-Eingänge zu ziehen.
4

Fahrprüfung ohne Stress : ein Stressbewältigungs- und Untersuchungskonzept mit besonderer Berücksichtigung chronobiologischer und neurologischer Erkenntnisse /

de Haas, Gabriela. January 2005 (has links) (PDF)
Diplomarbeit Hochschule für Angewandte Psychologie Zürich, 2005.
5

Using optogenetics to influence the circadian clock of \(Drosophila\) \(melanogaster\) / Die Verwendung der Optogenetik zur Beeinflussung der circadianen Uhr von \(Drosophila\) \(melanogaster\)

Beck, Sebastian January 2019 (has links) (PDF)
Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms’ physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s. The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network. The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift. Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all. / Nahezu alle Lebewesen der Erde haben sich an den Tag-Nacht-Zyklus angepasst, die einflussreichste und verlässlichste wiederkehrende Veränderung der Umwelt-bedingungen, verursacht durch die axiale Rotation des Planeten. Daraus resultierend haben viele Tiere komplizierte innere Uhren entwickelt, welche ihre Physiologie, ihren Stoffwechsel und ihr Verhalten an die tägliche Veränderung der natürlichen Bedingungen anpassen. Das Wissenschaftsfeld, das sich der Erforschung dieser inneren Uhren widmet, wird Chronobiologie genannt und hat seit der Arbeit der ersten Pioniere ab 1960 stetig an Größe und Relevanz gewonnen. Der prominenteste Modellorganismus für die Erforschung der circadianen Uhr ist Drosophila melanogaster, deren Uhr als Ansatzpunkt dient, die grundlegenden Vorgänge eines derart komplexen, endogenen Taktsystems zu verstehen. In dieser Thesis wurde versucht die Forschung an der circadianen Uhr mit den Techniken der Optogenetik zu kombinieren, eines jungen Forschungsfeldes, welches durch die Entdeckung von Channelrhodpsin 2 vor über 15 Jahren eröffnet wurde. Channelrhodopsin 2 ist ein Licht-gesteuerter Ionenkanal, der in der Grünalge Chlamydomonas reinhardtii entdeckt wurde. In der Optogenetik nutzen Forscher diese Licht-gesteuerten Ionenkanäle, indem sie sie in den Zellen anderer Organismen exprimieren, welche dann durch Licht stimuliert werden können. Dies ist besonders nützlich bei der Untersuchung von Neuronen, da diese Kanäle ein nahezu nicht-invasives Werkzeug zur Depolarisation neuronaler Membranen bieten. Das Ziel dieser Thesis war es, ein optogenetisches Werkzeug zu entwickeln, welches die circadiane Uhr von Drosophila melanogaster durch Licht manipulieren und deren Phase verschieben kann. Eine Phasenverschiebung ist die adaptive Antwort der circadianen Uhr auf einen äußeren Reiz, welcher eine Veränderung des natürlichen Lichtzyklus signalisiert. Ein optogenetisches Werkzeug, das die Phase der inneren Uhr verlässlich verschieben kann, würde viele neue Möglichkeiten zur Erforschung des neuronalen Uhrnetzwerks eröffnen und wie die Neuronen miteinander kommunizieren um das Netzwerk zu synchronisieren. Das erste optogenetische Werkzeug das in der circadianen Uhr von Drosophila melanogaster getestet wurde war „ChR2-XXL“, eine Channelrhodopsin-Variante mit erhöhter Expression und Photoströmen, gepaart mit einem verlängerten geöffneten Zustand. Die spezifische Expression von ChR2-XXL und auch die späterer Konstrukte wurde durch die Verwendung der drei Uhr-spezifischen GAL4-Treiberlinien clk856-gal4, pdf-gal4 und mai179-gal4 bewerkstelligt. Obwohl bereits gezeigt wurde, dass ChR2-XXL höchst effektiv die Depolarisierung von Neuronen bewirkt, waren diese Stimulationen jedoch nicht in der Lage die Phase der circadianen Uhr von Drosophila signifikant zu verschieben. Die zweite Serie an Versuchen wurde mit den konzeptionell neuartigen optogenetischen Werkzeugen Olf-bPAC und SthK-bPAC durchgeführt, welche jeweils einen durch zyklische Nukleotide gesteuerten Ionenkanal (Olf und SthK) mit der Licht-gesteuerten Adenylatcyclase bPAC kombinieren. Diese Werkzeuge erwiesen sich als äußert nützlich, solange sie in den Motoneuronen von Drosophila-Larven im dritten Larvenstadium exprimiert wurden, wo sie bei Beleuchtung die Larven sowohl paralysierten, als auch deren Körperlänge beeinflussten. Auf diese Weise konnten diese neuen Werkzeuge präzise charakterisiert werden, was in der erfolgreichen Veröffentlichung eines Forschungsartikels mündete, welcher hauptsächlich von der elektrophysiologischen Charakterisierung der Werkzeuge handelte und von deren Anwendungsmöglichkeiten in Modellorganismen wie Drosophila. In der circadianen Uhr verursachten diese Werkzeuge jedoch substantielle Schäden und produzierten schwere Arrhythmie und Anomalien in der neuronalen Entwicklung. Die Verwendung einer temperatur-sensitiven GAL80-Linie um die Expression zu verzögern, erzeugte ebenfalls keinerlei positive Ergebnisse. Für die letzte Serie an Experimenten wurde eine weitere Reihe neuer optogenetischer Werkzeuge verwendet, orientiert an Olf-bPAC und SthK-bPAC, wobei bPAC durch die membrangebundene Guanylatcyclase „CyclOp“ ausgetauscht wurde, welche wiederrum mit weniger wirkstarken Olf-Varianten kombiniert wurde. Dieser letzte Ansatz scheiterte jedoch ebenfalls. Obwohl diese neuen Werkzeuge in der Lage waren die Neuronenmembran bei Beleuchtung effektiv zu depolarisieren, vermochten sie es letztendlich nicht eine Phasenverschiebung zu bewirken. Zusammengenommen zeigen diese überwiegend negativen Ergebnisse, dass die optogenetische Manipulation der circadianen Uhr von Drosophila melanogaster ein extrem anspruchsvolles Thema ist. Da Licht bereits ohnehin den einflussreichsten Umweltfaktor für die circadiane Uhr darstellt, verlangt die Kombination von Chronobiologie und Optogenetik eine extrem präzise Feinabstimmung der Versuchsparameter, um überhaupt darauf hoffen zu dürfen, positive Ergebnisse mit derlei Versuchen zu erzeugen.
6

The circadian clock network of \(Drosophila\) \(melanogaster\) / Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\)

Schubert, Frank Klaus January 2019 (has links) (PDF)
All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. / Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden.
7

The circadian clock of the carpenter ant \(Camponotus\) \(floridanus\) / Die circadiane Uhr der Rossameise \(Camponotus\) \(floridanus\)

Kay, Janina January 2018 (has links) (PDF)
Due to the earth´s rotation around itself and the sun, rhythmic daily and seasonal changes in illumination, temperature and many other environmental factors occur. Adaptation to these environmental rhythms presents a considerable advantage to survival. Thus, almost all living beings have developed a mechanism to time their behavior in accordance. This mechanism is the endogenous clock. If it fulfills the criteria of (1) entraining to zeitgebers (2) free-running behavior with a period of ~ 24 hours (3) temperature compensation, it is also referred to as “circadian clock”. Well-timed behavior is crucial for eusocial insects, which divide their tasks among different behavioral castes and need to respond to changes in the environment quickly and in an orchestrated fashion. Circadian rhythms have thus been studied and observed in many eusocial species, from ants to bees. The underlying mechanism of this clock is a molecular feedback loop that generates rhythmic changes in gene expression and protein levels with a phase length of approximately 24 hours. The properties of this feedback loop are well characterized in many insects, from the fruit fly Drosophila melanogaster, to the honeybee Apis mellifera. Though the basic principles and components of this loop are seem similar at first glance, there are important differences between the Drosophila feedback loop and that of hymenopteran insects, whose loop resembles the mammalian clock loop. The protein PERIOD (PER) is thought to be a part of the negative limb of the hymenopteran clock, partnering with CRYPTOCHROME (CRY). The anatomical location of the clock-related neurons and the PDF-network (a putative in- and output mediator of the clock) is also well characterized in Drosophila, the eusocial honeybee as well as the nocturnal cockroach Leucophea maderae. The circadian behavior, anatomy of the clock and its molecular underpinnings were studied in the carpenter ant Camponotus floridanus, a eusocial insect Locomotor activity recordings in social isolation proved that the majority of ants could entrain to different LD cycles, free-ran in constant darkness and had a temperature-compensated clock with a period slightly shorter than 24 hours. Most individuals proved to be nocturnal, but different types of activity like diurnality, crepuscularity, rhythmic activity during both phases of the LD, or arrhythmicity were also observed. The LD cycle had a slight influence on the distribution of these activities among individuals, with more diurnal ants at shorter light phases. The PDF-network of C. floridanus was revealed with the anti-PDH antibody, and partly resembled that of other eusocial or nocturnal insects. A comparison of minor and major worker brains, only revealed slight differences in the number of somata and fibers crossing the posterior midline. All in all, most PDF-structures that are conserved in other insects where found, with numerous fibers in the optic lobes, a putative accessory medulla, somata located near the proximal medulla and many fibers in the protocerebrum. A putative connection between the mushroom bodies, the optic lobes and the antennal lobes was found, indicating an influence of the clock on olfactory learning. Lastly, the location and intensity of PER-positive cell bodies at different times of a 24 hour day was established with an antibody raised against Apis mellifera PER. Four distinct clusters, which resemble those found in A. mellifera, were detected. The clusters could be grouped in dorsal and lateral neurons, and the PER-levels cycled in all examined clusters with peaks around lights on and lowest levels after lights off. In summary, first data on circadian behavior and the anatomy and workings of the clock of C. floridanus was obtained. Firstly, it´s behavior fulfills all criteria for the presence of a circadian clock. Secondly, the PDF-network is very similar to those of other insects. Lastly, the location of the PER cell bodies seems conserved among hymenoptera. Cycling of PER levels within 24 hours confirms the suspicion of its role in the circadian feedback loop. / Durch die Rotation der Erde um die Sonne, entstehen rhythmische, tägliche und saisonale Änderungen in der Beleuchtung, Temperatur und vielen anderen Umweltfaktoren. Die Anpassung an diese Umweltrhythmen stellt einen großen Überlebensvorteil dar. Deshalb haben fast alle bekannten Lebewesen einen Mechanismus zur Steuerung ihres Verhaltens in Relation zu diesen Änderungen entwickelt. Dieser Mechanismus ist die innere Uhr, die auch als zirkadiane Uhr bezeichnet wird wenn sie die folgenden Kriterien erfüllt: (1) Entrainment auf Zeigeber (2) Freilaufendes Verhalten mit einer Periodenlänge von ungefähr 24 Stunden (3) Temperatur-Kompensation. Den korrekten Zeitpunkt für ein bestimmtes Verhalten einzuhalten ist äußerst wichtig für soziale Insekten. Sie verteilen ihre Aufgaben unter verschiedenen Verhaltens-Kasten und müssen in der Lage sein schnell und organisiert auf Umweltänderungen zu reagieren. Deshalb stellen sie interessante Objekte für das Studium circadianen Verhaltens dar, welches schon in vielen eusozialen Spezies wie Ameisen und Bienen beobachtet wurde. Der der inneren Uhr zugrunde liegende Mechanismus ist eine molekulare Rückkopplungsschleife, die rhythmische Veränderungen in der Expression von Genen und dem Akkumulationsniveau von Proteinen in einem 24 Stunden Zyklus hervorruft. Die Eigenschaften dieser Rückkopplungsschleife sind in vielen Organismen, von der Taufliege Drosophila melanogaster, bis zur Hongbiene Apis mellifera, bereits gut charakterisiert. Obwohl die Gemeinsamkeiten der zugrunde liegenden Prinzipien und Bestandteile stark auffallen, gibt es wichtige Unterschiede zwischen der Rückkopplungsschleife von Drosophila und der eher mammal organisierten Rückkopplungsschleifen hymenopterer Insekten. Das PERIOD (PER) Protein ist vermutlich ein Bestandteil des hemmenden Teils der Schleife und verbindet sich mit CRYPTOCHROME (CRY). Die anatomischen Eigenschaften der Uhrneurone und des PDF-Netzwerks (vermutlich der Ein- und Ausgang für Informationen im Uhrnetzwerk) sind ebenfalls in der Taufliege, eusozialen Honigbiene, sowie in der nachtaktiven Schabe Leucophea maderae sehr gut beschrieben. Die Rossameise Camponotus floridanus wurde hier als Studienobjekt verwendet, um zirkadianes Verhalten, die Anatomie der Uhr sowie die ihr zu Grunde liegenden molekularen Strukturen in einem weiteren eusozialen Organismus zu analysieren. Die Aufzeichnung von Lauf-Verhalten in sozialer Isolation bewies, dass der Großteil der Ameisen in der Lage ist auf verschiedene LD-Zyklen zu entrainen, freilaufendes Verhalten im Dunkeln aufweist und eine temperaturkompensierte Uhr mit einer Periodenlänge von etwa 24 Stunden besitzt. Die meisten Individuen waren nachtaktiv, aber es wurden auch andere Verhaltensmuster wie Tagaktivität, Dämmerungsaktivität, Rhythmische Aktivität während beiden LD Phasen sowie Arrhythmizität beobachtet. Der LD-Zyklus hatte einen leichten Einfluss auf die Verteilungsmuster dieser Aktivitätstypen. Mehr tagaktive Tiere wurden bei kurzen Lichtphasen beobachtet. Das PDF-Netzwerk in C. floridanus konnte mit Hilfe des anti-PDH Antikörpers sichtbar gemacht werden und ähnelte in Teilen dem anderer eusozialer oder nachtaktiver Insekten. Ein Vergleich zwischen den Gehirnen kleiner und großer Arbeiter zeigte nur geringe Unterschiede in der Anzahl von Zellkörpern und Fasern die die posteriore Mitte des Gehirns überschreiten. Im Gesamten konnte die Mehrzahl der zwischen den anderen Insektengehirnen konservierten PDF-Strukturen, wie viele Fasern in den optischen Loben, eine akzessorische Medulla, Zellkörper neben der proximalen Medulla und viele Verzweigungen im Protozerebrum, gefunden werden. Eine mögliche Verbindung zwischen den Pilzkörpern, optischen Loben und den Antennalloben wurde identifiziert und weist auf einen Einfluss der Uhr auf olfaktorisches Lernen hin. Zu guter letzte wurde mit Hilfe eines gegen Bienen-PER gerichteten Antikörpers die Lage und Intensität der PER-Zellkörper während mehrerer Zeitpunkte im Verlauf von 24 Stunden bestimmt. Vier abgegrenzte Gruppen von Zellkörpern, die den Gruppen in A. mellifera ähneln, konnten identifiziert werden. Diese Gruppen teilen sich in dorsale und laterale Neuronen und der Proteingehalt an PER oszilliert in allen untersuchten Gruppen, mit dem Höhepunkt bei Licht-an und dem Tiefpunkt kurz nach Licht-aus. Zusammenfassend ist zu sagen, dass erste Erkenntnisse über zirkadianes Verhalten, die Anatomie und die Grundlagen der inneren Uhr von C. floridanus gewonnen werden konnten. Erstens, erfüllt das Verhalten alle Kriterien für die Präsenz einer inneren Uhr. Zweitens, ist das PDF-Netzwerk ähnlich dem anderer Insekten. Letztens, scheint die Lage der PER-positiven Neurone innerhalb der Hymenopteren konserviert. Die Oszillation von PER bestätigt den Verdacht seiner Beteiligung an der Rückkopplungsschleife der inneren Uhr.
8

Outils théoriques de la chronobiologie et de la chronomédecine

Demongeot, Jacques 15 March 1978 (has links) (PDF)
.
9

Modulation du comportement de recherche de l'hôte chez les insectes hématophages Importance des facteurs endogènes. /

Bodin, Aurélie Lazzari, Claudio. January 2008 (has links) (PDF)
Thèse de doctorat : Sciences de la vie et de la santé : Tours : 2008. / Titre provenant de l'écran-titre.
10

A Comparison of the circadian clock of highly social bees (\(Apis\) \(mellifera\)) and solitary bees (\(Osmia\) \(spec.\)): Circadian clock development, behavioral rhythms and neuroanatomical characterization of two central clock components (PER and PDF) / Ein Vergleich der Inneren Uhr von sozialen Bienen (\(Apis\) \(mellifera\)) und solitären Bienen (\(Osmia\) \(spec.\)): Entwicklung der circadianen Uhr, Verhaltensrhythmen und neuroanatomische Beschreibung von zwei zentralen Uhr Komponenten (PER und PDF)

Beer, Katharina January 2021 (has links) (PDF)
Summary Bees, like many other organisms, evolved an endogenous circadian clock, which enables them to foresee daily environmental changes and exactly time foraging flights to periods of floral resource availability. The social lifestyle of a honey bee colony has been shown to influence circadian behavior in nurse bees, which do not exhibit rhythmic behavior when they are nursing. On the other hand, forager bees display strong circadian rhythms. Solitary bees, like the mason bee, do not nurse their offspring and do not live in hive communities, but face the same daily environmental changes as honey bees. Besides their lifestyle mason and honey bees differ in their development and life history, because mason bees overwinter after eclosion as adults in their cocoons until they emerge in spring. Honey bees do not undergo diapause and have a relatively short development of a few weeks until they emerge. In my thesis, I present a comparison of the circadian clock of social honey bees (Apis mellifera) and solitary mason bees (Osmia bicornis and Osmia cornuta) on the neuroanatomical level and behavioral output level. I firstly characterized in detail the localization of the circadian clock in the bee brain via the expression pattern of two clock components, namely the clock protein PERIOD (PER) and the neuropeptide Pigment Dispersing Factor (PDF), in the brain of honey bee and mason bee. PER is localized in lateral neuron clusters (which we called lateral neurons 1 and 2: LN1 and LN2) and dorsal neuron clusters (we called dorsal lateral neurons and dorsal neurons: DLN, DN), many glia cells and photoreceptor cells. This expression pattern is similar to the one in other insect species and indicates a common ground plan of clock cells among insects. In the LN2 neuron cluster with cell bodies located in the lateral brain, PER is co-expressed with PDF. These cells build a complex arborization network throughout the brain and provide the perfect structure to convey time information to brain centers, where complex behavior, e.g. sun-compass orientation and time memory, is controlled. The PDF arborizations centralize in a dense network (we named it anterio-lobular PDF hub: ALO) which is located in front of the lobula. In other insects, this fiber center is associated with the medulla (accessory medulla: AME). Few PDF cells build the ALO already in very early larval development and the cell number and complexity of the network grows throughout honey bee development. Thereby, dorsal regions are innervated first by PDF fibers and, in late larval development, the fibers grow laterally to the optic lobe and central brain. The overall expression pattern of PER and PDF are similar in adult social and solitary bees, but I found a few differences in the PDF network density in the posterior protocerebrum and the lamina, which may be associated with evolution of sociality in bees. Secondly, I monitored activity rhythms, for which I developed and established a device to monitor locomotor activity rhythms of individual honey bees with contact to a mini colony in the laboratory. This revealed new aspects of social synchronization and survival of young bees with indirect social contact to the mini colony (no trophalaxis was possible). For mason bees, I established a method to monitor emergence and locomotor activity rhythms and I could show that circadian emergence rhythms are entrainable by daily temperature cycles. Furthermore, I present the first locomotor activity rhythms of solitary bees, which show strong circadian rhythms in their behavior right after emergence. Honey bees needed several days to develop circadian locomotor rhythms in my experiments. I hypothesized that honey bees do not emerge with a fully matured circadian system in the hive, while solitary bees, without the protection of a colony, would need a fully matured circadian clock right away after emergence. Several indices in published work and preliminary studies support my hypothesis and future studies on PDF expression in different developmental stages in solitary bees may provide hard evidence. / Zusammenfassung Bienen, sowie viele andere Organismen, evolvierten eine innere circadiane Uhr, die es ihnen ermöglicht, tägliche Umweltveränderungen voraus zu sehen und ihre Foragierflüge zu Tageszeiten durchzuführen, wenn sie möglichst viele Blüten besuchen können. Es zeigte sich, dass der soziale Lebensstil der Honigbiene Einfluss auf das rhythmische Verhalten der Ammenbienen hat, die während der Brutpflege keinen täglichen Rhythmus im Verhalten aufweisen. Sammlerbienen auf der anderen Seite zeigen ein stark rhythmisches Verhalten. Solitäre Bienen, wie die Mauerbiene, betreiben keine Brutpflege und leben nicht in einer Staatengemeinschaft, aber sind den gleichen Umweltveränderungen ausgesetzt. Nicht nur Lebensstil, sondern auch Entwicklung und Lebenszyklus unterscheiden sich zwischen Honig- und Mauerbienen. Mauerbienen überwintern als adulte Insekten in einem Kokon bis sie im Frühjahr schlüpfen. Honigbienen durchleben keine Diapause und schlüpfen nach wenigen Wochen der Entwicklung im Bienenstock. In meiner Dissertation vergleiche ich die circadiane Uhr von sozialen Honigbienen (Apis mellifera) und solitären Mauerbienen (Osmia bicornis und Osmia cornuta) auf Ebene der Neuroanatomie und das durch die innere Uhr verursachte rhythmische Verhalten. Erstens charakterisierte ich detailliert die Lage der circadianen Uhr im Gehirn von Honig- und Mauerbiene anhand des Expressionsmusters von zwei Uhrkomponenten. Diese sind das Uhrprotein PERIOD (PER) und das Neuropeptid Pigment Dispersing Factor (PDF). PER wird exprimiert in lateralen Neuronen-Gruppen (die wir laterale Neurone 1 und 2 nannten: LN1 und LN2) und dorsalen Neuronen-Gruppen (benannt dorsal laterale Neurone und dorsale Neurone: DLN und DN), sowie in vielen Gliazellen und Fotorezeptorzellen. Dieses Expressionsmuster liegt ähnlich in anderen Insektengruppen vor und deutet auf einen Grundbauplan der Inneren Uhr im Gehirn von Insekten hin. In der LN2 Neuronen-Gruppe, deren Zellkörper im lateralen Gehirn liegen, sind PER und PDF in den gleichen Zellen co-lokalisiert. Diese Zellen bilden ein komplexes Netzwerk aus Verzweigungen durch das gesamte Gehirn und liefern damit die perfekte Infrastruktur, um Zeitinformation an Gehirnregionen weiterzuleiten, die komplexe Verhaltensweisen, wie Sonnenkompass-Orientierung und Zeitgedächtnis, steuern. Alle PDF Neuriten laufen in einer anterior zur Lobula liegenden Region zusammen (sie wurde ALO, anterio-lobular PDF Knotenpunkt, genannt). Dieser Knotenpunkt ist in anderen Insekten mit der Medulla assoziiert und wird akzessorische Medulla (AME) genannt. Wenige PDF Zellen bilden bereits im frühen Larvalstadium diesen ALO und die Zellzahl sowie die Komplexität des Netzwerks wächst die gesamte Entwicklung der Honigbiene hindurch. Dabei werden zuerst die dorsalen Gehirnregionen von PDF Neuronen innerviert und in der späteren Larvalentwicklung wachsen die Neurite lateral in Richtung der optischen Loben und des Zentralgehirns. Das generelle Expressionsmuster von PER und PDF in adulten sozialen und solitären Bienen ähnelt sich stark, aber ich identifizierte kleine Unterschiede in der PDF Netzwerkdichte im posterioren Protocerebrum und in der Lamina. Diese könnten mit der Evolution von sozialen Bienen assoziiert sein. Zweitens entwickelte und etablierte ich eine Methode, Lokomotionsrhythmen von individuellen Bienen im Labor aufzunehmen, die in Kontakt mit einem Miniaturvolk standen. Diese Methode enthüllte neue Aspekte der sozialen Synchronisation unter Honigbienen und des Überlebens von jungen Bienen, die indirekten sozialen Kontakt zu dem Miniaturvolk hatten (Trophalaxis war nicht möglich). Für Mauerbienen etablierte ich eine Methode Schlupf- und lokomotorische Aktivitätsrhythmik aufzuzeichnen und konnte damit zeigen, dass tägliche Rhythmen im Schlupf durch Synchronisation der circadianen Uhr in Mauerbienen durch Tagestemperatur-Zyklen erzielt werden kann. Des Weiteren präsentiere ich die ersten lokomotorischen Aktivitätsrhythmen von solitären Bienen, die sofort nach ihrem Schlupf einen starken circadianen Rhythmus im Verhalten aufwiesen. Honigbienen brauchten in meinen Experimenten mehrere Tage, um circadiane Rhythmen in Lokomotion zu entwickeln. Ich erstellte die Hypothese, dass Honigbienen zum Zeitpunkt des Schlupfes im Bienenvolk ein noch nicht vollständig ausgereiftes circadianes System besitzen, während solitäre Bienen, die ohne den Schutz eines Volkes sind, direkt nach dem Schlupf eine vollständig ausgereifte Uhr brauchen. Mehrere Hinweise in Publikationen und Vorversuchen unterstützen meine Hypothese. Zukünftige Studien der Entwicklung des PDF Neuronen-Netzwerkes in solitären Bienen unterschiedlicher Entwicklungsstufen könnten dies nachweisen.

Page generated in 0.4271 seconds