• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Octopaminergic Signaling in the Honeybee Flight Muscles : A Requirement for Thermogenesis / Octopaminerge Signalwege in der Flugmuskulatur der Honigbiene : Eine Voraussetzung für die Thermogenese

Kaya-Zeeb, Sinan David January 2023 (has links) (PDF)
For all animals the cold represents a dreadful danger. In the event of severe heat loss, animals fall into a chill coma. If this state persists, it is inevitably followed by death. In poikilotherms (e.g. insects), the optimal temperature range is narrow compared to homeotherms (e.g. mammals), resulting in a critical core temperature being reached more quickly. As a consequence, poikilotherms either had to develop survival strategies, migrate or die. Unlike the majority of insects, the Western honeybee (Apis mellifera) is able to organize itself into a superorganism. In this process, worker bees warm and cool the colony by coordinated use of their flight muscles. This enables precise control of the core temperature in the hive, analogous to the core body temperature in homeothermic animals. However, to survive the harsh temperatures in the northern hemisphere, the thermogenic mechanism of honeybees must be in constant readiness. This mechanism is called shivering thermogenesis, in which honeybees generate heat using their flight muscles. My thesis presents the molecular and neurochemical background underlying shivering thermogenesis in worker honeybees. In this context, I investigated biogenic amine signaling. I found that the depletion of vesicular monoamines impairs thermogenesis, resulting in a decrease in thoracic temperature. Subsequent investigations involving various biogenic amines showed that octopamine can reverse this effect. This clearly indicates the involvement of the octopaminergic system. Proceeding from these results, the next step was to elucidate the honeybee thoracic octopaminergic system. This required a multidisciplinary approach to ultimately provide profound insights into the function and action of octopamine at the flight muscles. This led to the identification of octopaminergic flight muscle controlling neurons, which presumably transport octopamine to the flight muscle release sites. These neurons most likely innervate octopamine β receptors and their activation may stimulate intracellular glycolytic pathways, which ensure sufficient energy supply to the muscles. Next, I examined the response of the thoracic octopaminergic system to cold stress conditions. I found that the thoracic octopaminergic system tends towards an equilibrium, even though the initial stress response leads to fluctuations of octopamine signaling. My results indicate the importance of the neuro-muscular octopaminergic system and thus the need for its robustness. Moreover, cold sensitivity was observed for the expression of one transcript of the octopamine receptor gene AmOARβ2. Furthermore, I found that honeybees without colony context show a physiological disruption within the octopaminergic system. This disruption has profound effects on the honeybees protection against the cold. I could show how important the neuro-muscular octopaminergic system is for thermogenesis in honeybees. In this context, the previously unknown neurochemical modulation of the honeybee thorax has now been revealed. I also provide a broad basis to conduct further experiments regarding honeybee thermogenesis and muscle physiology. / Kälte stellt für alle Tiere eine lebensbedrohliche Situation dar. Erleiden sie einen schwerwiegenden Wärmeverlust, stellt sich der Zustand eines Kältekomas ein. Hält dieser Zustand über einen längeren Zeitraum an, folgt unweigerlich der Tod. Poikilotherme (z.B. Insekten) weisen ein schmaleres optimales Temperaturfenster als Homoiotherme (z.B. Säugetiere) auf, wodurch sie ihre kritische Körpertemperatur schneller erreichen. Dadurch waren Poikilotherme gezwungen entweder Überlebenstrategien zu entwickeln, abzuwandern oder zu sterben. Im Gegensatz zu den meisten anderen Insektenarten, ist die Westliche Honigbiene Apis mellifera in der Lage einen Superorganismus zu bilden, in dem Arbeiterbienen durch den koordinierten Einsatz ihrer Flugmuskeln für Erwärmung oder Abkühlung sorgen. In Analogie zur Körpertemperatur von Homoiothermen, ermöglicht dies die exakte Kontrolle der Kerntemperatur des Bienenstocks. Um unter den rauen Bedingungen in der nördlichen Hemisphäre bestehen zu können, muss eine ununterbrochene Einsatzbereitschaft des thermogenen Mechanismus der Honigbiene garantiert werden. Dabei ist die Honigbiene in der Lage durch Zittern der Flugmuskulatur Wärme zu erzeugen. In dieser Dissertation stelle ich die molekularen und neurochemischen Grundlagen des thermogenen Muskelzitterns bei Honigbienenarbeiterinnen vor. In diesem Zusammenhang habe ich die Signalwege von verschiedenen biogenen Aminen untersucht und konnte demonstrieren, dass eine Erschöpfung vesikulärer Monoamine den Prozess der Thermogenese beeinflusst und zu einem Absinken der Thoraxtemperatur führt. Unter Einbeziehung veschiedener biogener Amine, konnten Folgeuntersuchungen zeigen, dass dieser Effekt durch Octopamin rückgängig gemacht werden kann. Dies weist eindeutig auf eine Beteiligung des octopaminergen Systems hin. Auf Basis dieser Erkenntnisse folgte die Erforschung des thorakalen octopaminergen Systems der Honigbiene. Dabei erforderte es einen multidisziplinären Ansatz, um weitere Einblicke in die Funktion und Wirkung von Octopamin in der Flugmuskulatur zu gewinnen. Im Zuge dessen, konnten flugmuskelinnervierende octopaminerge Neuronen identifiziert werden, die mutmaßlich die Flugmuskeln mit Octopamin versorgen. Es sind höchstwahrscheinlich diese Neuronen, die für eine Stimulation von Octopamin-β-Rezeptoren verantwortlich sind und wordurch intrazelluläre glykolytische Prozesse eine ausreichende Muskelversorgung gewährleisten. In den darauffolgenden Experimenten habe ich das Ansprechen des thorakalen octopaminergen Systems auf Kältestress untersucht und konnte zeigen, dass dieses System nach einem Gleichgewichtszustand strebt. Dies trifft selbst nach einer starken initialen Stressantwort zu. Meine Ergebnisse verdeutlichen die Bedeutsamkeit des neuromuskulären octopaminergen Systems und zeigen seine erforderliche Resilienz gegenüber exogenen Faktoren. Es konnte die Kälteempfindlichkeit eines Transkriptes des Octopaminrezeptorgens AmOARβ2 nachgewiesen werden. Zusätzlich konnte ich zeigen, dass Honigbienen ohne den sozialen Kontext der Kolonie eine starke physiologische Störung innerhalb des untersuchten Systems und damit auch in Bezug auf ihre Kälteresilienz aufweisen. Meine Dissertation verdeutlicht die enorme Bedeutung des neuromuskulären octopaminergen Systems im Kontext der Thermogenese im Organismus Honigbiene. In diesem Rahmen konnte die bisher unerforschte neurochemische Modulation des Honigbienenthorax aufgeklärt werden. Darüber hinaus bietet meine Arbeit eine Grundlage für künftige Experimente zur Thermogenese und Muskelphysiologie der Honigbiene.
2

Relevance of platelet count and ITAM-signalling pathway in murine models of haemostasis, thrombosis and thrombo-inflammation / Relevanz der Thrombozytenzahl und des ITAM-Signalwegs in Mausmodellen der Hämostase, Thrombose und Thromboinflammation

Morowski, Martina January 2014 (has links) (PDF)
Platelets are important players in haemostasis and their activation is essential to limit post-traumatic blood loss upon vessel injury. On the other hand, pathological platelet activation may lead to thrombosis resulting in myocardial infarction and stroke. Platelet activation and subsequent thrombus formation are, therefore, tightly regulated and require a well-defined interplay of platelet surface receptors, intracellular signalling molecules, cytoskeletal rearrangements and the activation of the coagulation cascade. In vivo thrombosis and haemostasis models mimic thrombus formation at sites of vascular lesions and are frequently used to assess thrombotic and haemostatic functions of platelets. In this dissertation, different in vivo models were used in mice to address the question at what level a reduced platelet count (PC) compromises stable thrombus formation. To study this, mice were rendered thrombocytopenic by low-dose anti-GPIbα antibody treatment and subjected to a tail bleeding time assay as well as to four different in vivo thrombosis models. Haemostasis and occlusive thrombus formation in small vessels were only mildly affected even at severe reductions of the PC. In contrast, occlusive thrombus formation in larger arteries required higher PCs demonstrating that considerable differences in the sensitivity for PC reductions exist between these models. In a second part of this study, mice were rendered thrombocytopenic by injection of high-dose anti-GPIbα antibody which led to the complete loss of all platelets from the circulation for several days. During recovery from thrombocytopenia, the newly generated platelet population was characterised and revealed a defect in immunoreceptor tyrosine-based activation motif (ITAM)-signalling. This defect translated into impaired arterial thrombus formation. To further investigate ITAM-signalling in vivo, genetically modified mice were analysed which display a positive or negative regulation of platelet ITAM-signalling in vitro. Whereas mice lacking the adapter Grb2 in platelets showed a delayed thrombus formation in vivo after acetylsalicylic acid treatment, Clp36ΔLIM bone marrow chimeric mice and SLAP/SLAP2-deficient mice displayed pro-thrombotic properties in vivo. Finally, mice lacking the adapter protein EFhd2 were analysed in vitro and in vivo. However, EFhd2-deficient platelets showed only a minor increase in the procoagulant activity compared to control. / Thrombozyten sind wichtige Zellen für die Hämostase, die bei einer Verletzung der Gefäßwand aktiviert werden, um den Blutverlust zu begrenzen. Auf der anderen Seite kann die pathologische Aktvierung von Thrombozyten jedoch zu Thromboseereignissen und in Konsequenz zu Schlaganfall und Herzinfarkt führen. Die Aktivierung von Thrombozyten und die nachfolgende Thrombusbildung sind daher streng reguliert und setzen ein enges Zusammenspiel von Thrombozytenoberflächenrezeptoren, intrazellulären Signalmolekülen, Zytoskelettumstrukturierungen und die Aktivierung der Koagulationskaskade voraus. In vivo Thrombose- und Hämostase-Modelle ahmen die Thrombusbildung in Gefäßen nach und werden häufig benutzt um die hämostatische und thrombotische Funktion von Thrombozyten zu untersuchen. In dieser Dissertation wurden verschiedene in vivo Modelle in Mäusen genutzt, um zu klären, ab welcher Thrombozytenzahl eine stabile Thrombusbildung beeinträchtigt ist. Für diese Untersuchung wurden Mäuse mit geringen Dosen anti-GPIbα Antikörper behandelt, die zu einer Reduktion der Thrombozytenzahl führen. Anschließend wurden die Mäuse in einem Blutungszeitmodel und vier verschiedenen thrombotischen Modellen untersucht. Hämostase oder okklusive Thrombusbildung in kleinen Gefäßen waren auch bei einer sehr starken Reduktion der Thrombozytenzahl kaum beeinträchtigt. Im Gegensatz dazu war für eine normale Thrombusbildung in größeren Gefäßen eine höhere Thrombozytenzahl nötig. Verschiedene in vivo Modelle zeigen daher eine unterschiedliche Sensitivität gegenüber einer Reduktion der Thrombozytenzahl. Im zweiten Teil dieser Arbeit wurden Mäuse mit einer hohen Dosis anti-GPIbα Antikörper behandelt, die zu einem völligen, mehrtägigen Verlust aller Thrombozyten im Blutkreislauf führte. Während sich die Thrombozytenzahl erholte, wurden neu generierte Thrombozyten charakterisiert, die einen deutlichen Defekt im ITAM-Signalweg zeigten. Dieser Defekt führte zu einer verminderten arteriellen Thrombusbildung. Um Auswirkungen eines Defektes im ITAM-Signalweg detaillierter in vivo zu untersuchen, wurden genetisch veränderte Mäuse, die in vitro eine reduzierte oder verstärkte ITAM-Signaltransduktion in Thrombozyten zeigen, untersucht. Während Mäuse, die in Thrombozyten kein Grb2 exprimieren nach Acetylsalicylsäurebehandlung in vivo eine verlangsamte Thrombusbildung zeigten, war die Thrombusbildung in Clp36ΔLIM Knochenmarkchimären und SLAP/SLAP2-defizienten Mäusen beschleunigt. Darüber hinaus wurden EFhd2-defiziente Mäuse in vitro und in vivo analysiert. EFhd2-defiziente Thrombozyten zeigten jedoch nur eine geringe Steigerung in der prokoagulatorischen Aktivität im Vergleich zu Kontrolltieren.
3

The immune transcriptome and proteome of the ant Camponotus floridanus and vertical transmission of its bacterial endosymbiont Blochmannia floridanus / Das Immuntranskriptom und -proteom der Ameise Camponotus floridanus und die vertikale Transmission ihres Endosymbionten Blochmannia floridanus

Kupper, Maria January 2016 (has links) (PDF)
The evolutionary success of insects is believed to be at least partially facilitated by symbioses between insects and prokaryotes. Bacterial endosymbionts confer various fitness advantages to their hosts, for example by providing nutrients lacking from the insects’ diet thereby enabling the inhabitation of new ecological niches. The Florida carpenter ant Camponotus floridanus harbours endosymbiotic bacteria of the genus Blochmannia. These primary endosymbionts mainly reside in the cytoplasm of bacteriocytes, specialised cells interspersed into the midgut tissue, but they were also found in oocytes which allows their vertical transmission. The social lifestyle of C. floridanus may facilitate the rapid spread of infections amongst genetically closely related animals living in huge colonies. Therefore, the ants require an immune system to efficiently combat infections while maintaining a “chronic” infection with their endosymbionts. In order to investigate the immune repertoire of the ants, the Illumina sequencing method was used. The previously published genome sequence of C. floridanus was functionally re-annotated and 0.53% of C. floridanus proteins were assigned to the gene ontology (GO) term subcategory “immune system process”. Based on homology analyses, genes encoding 510 proteins with possible immune function were identified. These genes are involved in microbial recognition and immune signalling pathways but also in cellular defence mechanisms, such as phagocytosis and melanisation. The components of the major signalling pathways appear to be highly conserved and the analysis revealed an overall broad immune repertoire of the ants though the number of identified genes encoding pattern recognition receptors (PRRs) and antimicrobial peptides (AMPs) is comparatively low. Besides three genes coding for homologs of thioester-containing proteins (TEPs), which have been shown to act as opsonins promoting phagocytosis in other insects, six genes encoding the AMPs defesin-1 and defensin-2, hymenoptaecin, two tachystatin-like peptides and one crustin-like peptide are present in the ant genome. Although the low number of known AMPs in comparison to 13 AMPs in the honey bee Apis mellifera and 46 AMPs in the wasp Nasonia vitripennis may indicate a less potent immune system, measures summarised as external or social immunity may enhance the immune repertoire of C. floridanus, as it was discussed for other social insects. Also, the hymenoptaecin multipeptide precursor protein may be processed to yield seven possibly bioactive peptides. In this work, two hymenoptaecin derived peptides were heterologously expressed and purified. The preliminary antimicrobial activity assays indicate varying bacteriostatic effects of different hymenoptaecin derived peptides against Escherichia coli D31 and Staphylococcus aureus which suggests a functional amplification of the immune response further increasing the antimicrobial potency of the ants. Furthermore, 257 genes were differentially expressed upon immune challenge of C. floridanus and most of the immune genes showing differential expression are involved in recognition of microbes or encode immune effectors rather than signalling components. Additionally, genes coding for proteins involved in storage and metabolism were downregulated upon immune challenge suggesting a trade-off between two energy-intensive processes in order to enhance effectiveness of the immune response. The analysis of gene expression via qRT-PCR was used for validation of the transcriptome data and revealed stage-specific immune gene regulation. Though the same tendencies of regulation were observed in larvae and adults, expression of several immune-related genes was generally more strongly induced in larvae. Immune gene expression levels depending on the developmental stage of C. floridanus are in agreement with observations in other insects and might suggest that animals from different stages revert to individual combinations of external and internal immunity upon infection. The haemolymph proteome of immune-challenged ants further established the immune-relevance of several proteins involved in classical immune signalling pathways, e.g. PRRs, extracellularly active proteases of the Toll signalling pathway and effector molecules such as AMPs, lysozymes and TEPs. Additionally, non-canonical proteins with putative immune function were enriched in immune-challenged haemolymph, e.g. Vitellogenins, NPC2-like proteins and Hemocytin. As known from previous studies, septic wounding also leads to the upregulation of genes involved in stress responses. In the haemolymph, proteins implicated in protein stabilisation and in the protection against oxidative stress and insecticides were enriched upon immune challenge. In order to identify additional putative immune effectors, haemolymph peptide samples from immune-challenged larvae and adults were analysed. The analysis in this work focussed on the identification of putative peptides produced via the secretory pathway as previously described for neuropeptides of C. floridanus. 567 regulated peptides derived from 39 proteins were identified in the larval haemolymph, whereas 342 regulated peptides derived from 13 proteins were found in the adult haemolymph. Most of the peptides are derived from hymenoptaecin or from putative uncharacterised proteins. One haemolymph peptide of immune-challenged larvae comprises the complete amino acid sequence of a predicted peptide derived from a Vitellogenin. Though the identified peptide lacks similarities to any known immune-related peptide, it is a suitable candidate for further functional analysis. To establish a stable infection with the endosymbionts, the bacteria have to be transmitted to the next generation of the ants. The vertical transmission of B. floridanus is guaranteed by bacterial infestation of oocytes. This work presents the first comprehensive and detailed description of the localisation of the bacterial endosymbionts in C. floridanus ovaries during oogenesis. Whereas the most apical part of the germarium, which contains the germ-line stem cells, is not infected by the bacteria, small somatic cells in the outer layers of each ovariole were found to be infected in the lower germarium. Only with the beginning of cystocyte differentiation, endosymbionts are exclusively transported from follicle cells into the growing oocytes, while nurse cells were never infected with B. floridanus. This infestation of the oocytes by bacteria very likely involves exocytosis-endocytosis processes between follicle cells and the oocytes. A previous study suggested a down-modulation of the immune response in the midgut tissue which may promote endosymbiont tolerance. Therefore, the expression of several potentially relevant immune genes was analysed in the ovarial tissue by qRT-PCR. The relatively low expression of genes involved in Toll and IMD signalling, and the high expression of genes encoding negative immune regulators, such as PGRP-LB, PGRP-SC2, and tollip, strongly suggest that a down-modulation of the immune response may also facilitate endosymbiont tolerance in the ovaries and thereby contribute to their vertical transmission. Overall, the present thesis improves the knowledge about the immune repertoire of C. floridanus and provides new candidates for further functional analyses. Moreover, the involvement of the host immune system in maintaining a “chronic” infection with symbiotic bacteria was confirmed and extended to the ovaries. / Der evolutionäre Erfolg von Insekten wird zumindest teilweise Symbiosen zwischen Insekten und Prokaryonten zugeschrieben. Dabei übertragen bakterielle Symbionten verschiedenste Fitnessvorteile an ihre Wirte. Beispielsweise ermöglicht die Bereitstellung von Nährstoffen, welche in der Nahrung des Insekts fehlen, die Erschließung neuer ökologischer Nischen. Die Florida Rossameise Camponotus floridanus trägt endosymbiontische Bakterien der Gattung Blochmannia. Diese primären Endosymbionten kommen hauptsächlich im Zytoplasma von spezialisierten Zellen des Mitteldarms, den sogenannten Bakteriozyten, vor. Blochmannien wurden aber auch in Oozyten und Eiern gefunden, was ihre vertikale Übertragung an Individuen der nächsten Generation ermöglicht. Als soziale Insekten leben C. floridanus in großen Kolonien von nah verwandten Individuen. Ihre Lebensweise begünstigt möglicherweise die schnelle Ausbreitung von Infektionen, weshalb erwartet werden müsste, dass die Ameisen ein effizientes Immunsystem besitzen. Gleichzeitig muss jedoch die „chronische“ Infektion mit den bakteriellen Symbionten aufrechterhalten werden. In der vorliegenden Arbeit wurde das Immunrepertoire der Ameisen mittels Illumina Sequenzierung charakterisiert. Zunächst wurde das vor kurzem publizierte Genom von C. floridanus funktionell re-annotiert. Dabei wurden 0.53% der annotierten Proteine der GO-Unterkategorie “Prozesse des Immunsystems” zugeordnet. Basierend auf Homologieanalysen wurden Gene identifiziert, die für 510 Immunproteine kodieren. Die Genprodukte spielen eine Rolle bei der Erkennung von Mikroben und in den Signalwegen des Immunsystems, sind jedoch auch an Prozessen der zellulären Immunantwort, wie beispielsweise Phagozytose und Melanisierung, beteiligt. Dabei sind Komponenten der Hauptsignalwege hoch konserviert. Obwohl die Anzahl der identifizierten Proteine, die Fremdorganismen erkennen (PRRs), und die Anzahl an antimikrobiellen Peptiden (AMPs) vergleichsweise gering ist, verfügt C. floridanus insgesamt über ein umfangreiches Immunrepertoire. Neben drei Genen, die für Thioester-enthaltende Proteine (TEPs) kodieren und wie in anderen Insekten möglicherweise eine Rolle als Opsonine bei der Phagozytose spielen, wurden sechs AMP-Gene identifiziert. Diese kodieren für Defesin-1 und Defensin-2, Hymenoptaecin, zwei Tachystatin-ähnliche und ein Crustin-ähnliches Peptid. Die geringe Anzahl an bekannten AMPs im Vergleich zur Honigbiene Apis mellifera (13 AMPs) und Wespe Nasonia vitripennis (46 AMPs) könnte ein möglicherweise geringeres Potential des Immunsystems anzeigen. Allerdings könnten zusätzliche Maßnahmen, die unter dem Begriff „Soziale Immunität“ zusammengefasst werden, das Immunrepertoire von C. floridanus ergänzen, wie es schon für andere Insekten diskutiert wurde. Zudem könnten durch proteolytische Prozessierung des Hymenoptaecin Multipeptid Präkursormoleküls sieben mögliche antimikrobielle Peptide freigesetzt werden. Für die vorliegende Arbeit wurden zwei verschiedene dieser Hymenoptaecin Peptide heterolog exprimiert und aufgereinigt. Die vorläufige funktionelle Charakterisierung der Peptide zeigt, dass diese Peptide möglicherweise bakteriostatische Wirkung mit einem unterschiedlichen Wirkspektrum gegen Escherichia coli D31 und Staphylococcus aureus entfalten. Dies erlaubt die Annahme, dass die Expression des Hymenoptaecins zu einer funktionellen Amplifikation der Immunantwort führt und das Immunrepertoire der Ameisen erweitert. Nach Injektion von bakteriellem Material in die Ameisen wurde die Expression von 257 Genen reguliert. Viele dieser Gene kodieren für Proteine zur Erkennung von Pathogenen oder kodieren für Effektoren des Immunsystems. Komponenten der Signalwege zeigten dagegen kaum Veränderungen in ihrer Expression auf. Außerdem zeigten Gene, die für Speicherproteine oder Proteine des Metabolismus kodieren, generell eine geringere Expression nach Stimulierung des Immunsystems auf. Dies lässt einen Ausgleich zwischen zwei energieintensiven Prozessen vermuten, um eine effektive Immunantwort zu ermöglichen. Darüber hinaus zeigt die Validierung der Expressionsdaten mittels qRT-PCR eine Abhängigkeit der Expression mehrerer Gene vom Entwicklungsstadium der Ameisen auf. Generell wurden die gleichen Tendenzen in der Regulation der Expression dieser Gene nach Immunstimulierung beobachtet. Allerdings wurde die Expression mehrerer immunrelevanter Gene in Larven weit stärker induziert als in Adulten. Wie es auch schon für andere Insekten gezeigt wurde, scheinen C. floridanus Larven und Arbeiterinnen auf individuelle Kombinationen externer und interner Immunfaktoren zurückzugreifen. Die vorher beschriebenen Transkriptomdaten wurden durch die Charakterisierung des Hämolymph-Proteoms von C. floridanus nach Immunstimulation ergänzt, wodurch die Immunrelevanz vieler Faktoren auch auf Proteinebene bestätigt werden konnte. Beispielsweise wurden zahlreiche PRRs und extrazellulär aktive Proteasen des Toll-Signalwegs, aber auch Immuneffektoren wie AMPs, Lysozyme und TEPs in der Hämolymphe identifiziert. Zusätzlich führte die Immunstimulation in Larven und Adulten zur Anreicherung nicht-kanonischer Proteine mit möglicher Immunfunktion, beispielsweise Vitellogenine, NPC2-ähnliche Proteine und Hemocytin. Aus einer früheren Arbeit ist bekannt, dass septische Verwundungen zusätzlich die transkriptionelle Aktivierung von Genen der Stressantwort hervorrufen können. So wurden auch in der Hämolymphe Proteine entdeckt, die eine Rolle bei der Stabilisierung von Proteinen, und dem Schutz gegen oxidativen Stress und Insektizide spielen. Zur Identifizierung weiterer möglicher Peptideffektoren wurden Hämolymphpeptid-Proben von immunstimulierten Larven und Adulten analysiert. Der Fokus der Analyse lag dabei auf der Identifizierung von Peptiden, die auf dem sekretorischen Weg gebildet werden, wie es zuvor für Neuropeptide von C. floridanus beschrieben worden war. 567 differentiell regulierte Peptide, die von 39 Proteinen abstammen, wurden in Larvenhämolymphe identifiziert, wohingegen in der Hämolymphe von Adulttieren 342 derartige Peptide, die 13 Proteinen zugeordnet werden können, gefunden wurden. Die meisten dieser Peptide können Hymenoptaecin oder bisher noch nicht charakterisierte Proteinen zugeordnet werden. Jedoch wurde ein Peptid in larvaler Hämolymphe identifiziert, dessen Aminosäuresequenz vollständig mit der Sequenz eines vorhergesagten, von Vitellogenin stammenden Peptids übereinstimmt. Weil dieses Peptid keine Ähnlichkeiten zu anderen bereits charakterisierten antimikrobiellen Peptiden aufweist, stellt es einen geeigneten Kandidaten für weitere funktionelle Analysen dar. Die bakterielle Infektion von Oozyten ermöglicht die transovariale Übertragung von B. floridanus und ermöglicht damit die Etablierung einer stabilen Infektion in der nächsten Wirtsgeneration. Die vorliegende Arbeit beinhaltet die erste umfassende und detaillierte Beschreibung der Lokalisation bakterieller Endosymbionten in Ovarien von C. floridanus. Im apikalen Germarium, in welchem sich die Keimbahn-Stammzellen befinden, liegt noch keine bakterielle Infektion des Gewebes vor. In späteren Segmenten des Germariums jedoch können Blochmannien das erste Mal in kleinen somatischen Zellen der äußeren Schicht jeder Ovariole detektiert werden. Mit beginnender Zystozytendifferenzierung werden die Endosymbionten von Follikelzellen ausschließlich in die heranwachsenden Oozyten transportiert, wobei sehr wahrscheinlich Exozytose-Endozytose-Prozesse involviert sind. Nährzellen zeigen zu keinem Zeitpunkt während der Oogenese eine bakterielle Infektion auf. Da in einer früheren Studie vorgeschlagen wurde, dass eine signifikant reduzierte Anregung der Immunantwort im Mitteldarmgewebe zur Toleranz der Endosymbionten beitragen könnte, wurde auch die Expression ausgewählter Immungene in den Ovarien durch qRT-PCR untersucht. Die relativ geringe Expression von Genen des Toll- und des IMD-Signalwegs und die zusätzlich vergleichsweise starke Genexpression negativer Regulatoren des Immunsystems, wie PGRP-LB, PGRP-SC2 und tollip, sind Indikatoren einer reduzierten Immunantwort in den Ovarien von C. floridanus. Wie schon für den Mitteldarm der Tiere vorgeschlagen, könnte dies möglicherweise sowohl zur Toleranz von Blochmannia als auch zur vertikalen Übertragung der Endosymbionten beitragen. Die vorliegende Doktorarbeit erweitert das Wissen über das Immunrepertoire von C. floridanus und es konnten vielversprechende Kandidaten für weitere funktionelle Analysen von möglichen Immunfaktoren identifiziert werden. Darüber hinaus konnten weitere Hinweise auf die Bedeutung von Immunfaktoren der Ameisen bei der Toleranz gegenüber den symbiontischen Bakterien gefunden und auf die Ovarien der Tiere ausgeweitet werden.
4

The circadian clock network of \(Drosophila\) \(melanogaster\) / Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\)

Schubert, Frank Klaus January 2019 (has links) (PDF)
All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. / Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden.
5

Brain serotonin throughout development - for better and for worse / Der Effekt von Serotonin im sich entwickelnden Gehirn - in guten wie in schlechten Tagen

Weidner, Magdalena Theodora January 2018 (has links) (PDF)
The work presented in this thesis covers the effects of early-life adversity in the context of altered serotonin (5-HT; 5-hydroxytryptamine) system functioning in mice. The main body is focussing on a screening approach identifying molecular processes, potentially involved in distinct behavioural manifestations that emerge from or are concomitant with early adversity and, with regard to some behavioural manifestations, dependent on the functioning of the 5-HT system. / Diese Arbeit berichtet Ergebnisse der umfassenden Erforschung des Einflusses von aversiven Bedingungen während der pränatalen und frühkindlichen Entwicklungsphase, unter dem Einfluss genetischer Variationen des serotonergen (5-HT, 5-Hydroxytryptamin) Systems, im Mausmodel. Der Hauptfokus der Thesis lag bei der hypothesenfreien Untersuchung der Konsequenzen, die durch den kombinierten Effekt aversiver Bedingungen, und genetischer Prädisposition ausgelöst werden, sowie, final, der Ermittlung potentieller Kandidatengene, die an der Manifestierung verhaltensbezogener Konsequenzen beteiligt sein können sowie durch epigenetische Mechanismen reguliert werden.
6

Functional analysis of Mushroom body miniature’s RGG-box and its role in neuroblast proliferation in Drosophila melanogaster / Funktionelle Analyse der RGG-Box von Mushroom body miniature und deren Rolle in der Neuroblastenproliferation in Drosophila melanogaster

Hartlieb, Heiko January 2020 (has links) (PDF)
Development of the central nervous system in Drosophila melanogaster relies on neural stem cells called neuroblasts. Neuroblasts divide asymmetrically to give rise to a new neuroblast as well as a small daughter cell which eventually generates neurons or glia cells. Between each division, neuroblasts have to re-grow to be able to divide again. In previous studies, it was shown that neuroblast proliferation, cell size and the number of progeny cells is negatively affected in larvae carrying a P-element induced disruption of the gene mushroom body miniature (mbm). This mbm null mutation called mbmSH1819 is homozygously lethal during pupation. It was furthermore shown that the nucleolar protein Mbm plays a role in the processing of ribosomal RNA (rRNA) as well as the translocation of ribosomal protein S6 (RpS6) in neuroblasts and that it is a transcriptional target of Myc. Therefore, it was suggested that Mbm might regulate neuroblast proliferation through a role in ribosome biogenesis. In the present study, it was attempted to further elucidate these proposed roles of Mbm and to identify the protein domains that are important for those functions. Mbm contains an arginine/glycine rich region in which a di-RG as well as a di-RGG motif could be found. Together, these two motifs were defined as Mbm’s RGG-box. RGG-boxes can be found in many proteins of different families and they can either promote or inhibit protein-RNA as well as protein-protein interactions. Therefore, Mbm’s RGG-box is a likely candidate for a domain involved in rRNA binding and RpS6 translocation. It could be shown by deletion of the RGG-box, that MbmdRGG is unable to fully rescue survivability and neuroblast cell size defects of the null mutation mbmSH1819. Furthermore, Mbm does indeed rely on its RGG-box for the binding of rRNA in vitro and in mbmdRGG as well as mbmSH1819 mutants RpS6 is partially delocalized. Mbm itself also seems to depend on the RGG-box for correct localization since MbmdRGG is partially delocalized to the nucleus. Interestingly, protein synthesis rates are increased in mbmdRGG mutants, possibly induced by an increase in TOR expression. Therefore, Mbm might possess a promoting function in TOR signaling in certain conditions, which is regulated by its RGG-box. Moreover, RGG-boxes often rely on methylation by protein arginine methyltransferases (in Drosophila: Darts – Drosophila arginine methyltransferases) to fulfill their functions. Mbm might be symmetrically dimethylated within its RGG-box, but the results are very equivocal. In any case, Dart1 and Dart5 do not seem to be capable of Mbm methylation. Additionally, Mbm contains two C2HC type zinc-finger motifs, which could be involved in rRNA binding. In an earlier study, it was shown that the mutation of the zinc-fingers, mbmZnF, does not lead to changes in neuroblast cell size, but that MbmZnF is delocalized to the cytoplasm. In the present study, mbmZnF mutants were included in most experiments. The results, however, are puzzling since mbmZnF mutant larvae exhibit an even lower viability than the mbm null mutants and MbmZnF shows stronger binding to rRNA than wild-type Mbm. This suggests an unspecific interaction of MbmZnF with either another protein, DNA or RNA, possibly leading to a dominant negative effect by disturbing other interaction partners. Therefore, it is difficult to draw conclusions about the zinc-fingers’ functions. In summary, this study provides further evidence that Mbm is involved in neuroblast proliferation as well as the regulation of ribosome biogenesis and that Mbm relies on its RGG-box to fulfill its functions. / Die Entwicklung des zentralen Nervensystems von Drosophila melanogaster beruht auf neuronalen Stammzellen genannt Neuroblasten. Neuroblasten teilen sich asymmetrisch und bringen dabei sowohl einen neuen Neuroblasten als auch eine kleinere Tochterzelle hervor, die wiederum letztlich Neuronen oder Gliazellen generiert. Zwischen jeder Zellteilung müssen die Neuroblasten wieder auf ihre ursprüngliche Größe wachsen, sodass sie zur erneuten Teilung in der Lage sind. In vorhergehenden Studien konnte gezeigt werden, dass sowohl die Proliferation der Neuroblasten, deren Zellgröße als auch die Anzahl ihrer Tocherzellen reduziert ist in Larven, die eine P-Element-induzierte Unterbrechung des Gens mushroom body miniature (mbm) tragen. Diese mbm-Nullmutation, genannt mbmSH1819, ist homozygot letal während des Puppenstadiums. Es konnte außerdem gezeigt werden, dass das nucleoläre Protein Mbm eine Rolle in der Prozessierung ribosomaler RNA (rRNA), sowie der Translokation des ribosomalen Proteins S6 (RpS6) in Neuroblasten erfüllt und dass seine Transkription durch Myc reguliert wird. Daher wurde geschlussfolgert, dass Mbm die Proliferation von Neuroblasten durch eine Funktion in der Ribosomenbiogenese regulieren könnte. In der vorliegenden Studie wurde das Ziel verfolgt, weitere Hinweise auf diese möglichen Funktionen von Mbm zu finden und die Proteindomänen zu identifizieren, die dafür benötigt werden. Mbm beinhaltet einen Arginin/Glycin-reichen Abschnitt, der ein di-RG sowie ein di-RGG Motiv enthält. Diese beiden Motive wurden zusammen zu Mbms RGG-Box definiert. RGG-Boxen finden sich in vielen Proteinen verschiedener Familien und sie können sich sowohl verstärkend als auch inhibierend auf Protein-RNA- sowie Protein-Protein-Interaktionen auswirken. Somit stellt Mbms RGG-Box einen vielversprechenden Kandidaten dar für eine Proteindomäne, die in die rRNA-Bindung sowie die Translokation von RpS6 involviert ist. Es konnte gezeigt werden, dass Mbm mit deletierter RGG-Box (MbmdRGG) nicht in der Lage ist, die Überlebensfähigkeit und die Neuroblastengröße der Nullmutation mbmSH1819 vollständig zu retten. Des Weiteren benötigt Mbm die RGG-Box, um rRNA in vitro zu binden und in mbmdRGG sowie mbmSH1819 Mutanten konnte eine partielle Delokalisation von RpS6 beobachtet werden. Die korrekte Lokalisation von Mbm selbst scheint auch von der RGG-Box abzuhängen, da MbmdRGG teilweise in den Nukleus delokalisiert ist. Interessanterweise ist außerdem die Proteinsyntheserate in mbmdRGG Mutanten erhöht, was möglicherweise in einer Erhöhung der TOR-Expression begründet ist. Somit könnte Mbm unter bestimmten Bedingungen eine verstärkende Funktion im TOR-Signalweg erfüllen, die durch seine eigene RGG-Box reguliert wird. Des Weiteren sind RGG-Boxen hinsichtlich ihrer Funktion häufig von der Methylierung durch Protein-Arginin-Methyltransferasen (in Drosophila: Darts – Drosophila arginine methyltransferases) abhängig. Mbm könnte innerhalb seiner RGG-Box symmetrisch dimethyliert sein, allerdings sind die Ergebnisse in dieser Hinsicht sehr zweifelhaft. Jedenfalls scheinen Dart1 und Dart5 nicht imstande zu sein, Mbm zu methylieren. Außerdem beinhaltet Mbm zwei Zink-Finger-Motive des C2HC-Typs, die in die Bindung von rRNA involviert sein könnten. Eine vorhergehende Studie konnte zeigen, dass die Mutation der Zink-Finger, mbmZnF, zwar nicht zu einer Veränderung der Neuroblastengröße führt, allerdings, dass MbmZnF ins Zytoplasma delokalisiert vorliegt. In der vorliegenden Studie wurden die mbmZnF Mutanten in die meisten Experimente mit einbezogen. Allerdings sind die Ergebnisse rätselhaft, da mbmZnF-mutierte Larven sogar eine geringere Überlebensrate zeigen als die mbm Nullmutanten und da MbmZnF eine stärkere Bindungsaffinität zu rRNA zeigt als wildtypisches Mbm. Dies weist auf eine unspezifische Interaktion zwischen MbmZnF und einem anderen Protein, RNA oder DNA hin, was einen dominant-negativen Effekt auslösen könnte, indem andere Interaktionspartner gestört werden. Somit gestaltet es sich schwierig, Schlussfolgerungen zur Funktion der Zink-Finger zu ziehen. Zusammengefasst liefert die vorliegende Studie weitere Anhaltspunkte, dass Mbm in der Neuroblastenproliferation sowie der Regulation der Ribosomenbiogenese involviert ist und dass Mbm seine RGG-Box benötigt, um seine Funktionen zu erfüllen.
7

Functional characterization of splicing-associated kinases in the blood stages of the malaria parasite Plasmodium falciparum / Funktionelle Charakterisierung von Splicing-assoziierten Kinasen in den Blutstadien des Malariaerregers Plasmodium falciparum

Kern, Selina Melanie January 2014 (has links) (PDF)
Besides HIV and tuberculosis, malaria still is one of the most devastating infectious diseases especially in developing countries, with Plasmodium falciparum being responsible for the frequently lethal form of malaria tropica. It is a major cause of mortality as well as morbidity, whereby pregnant women and children under the age of five years are most severely affected. Rapidly emerging drug resistances and the lack of an effective and safe vaccine hamper the combat against malaria by chemical and pharmacological regimens, and moreover the poor socio-economic and healthcare conditions in malaria-endemic countries are compromising the extermination of this deadly tropical disease to a large extent. Malaria research is still questing for druggable targets in the parasitic protozoan which pledge to be refractory against evolving resistance-mediating mutations and yet constitute affordable and compliant antimalarial chemotherapeutics. The parasite kinome consists of members that represent most eukaryotic protein kinase groups, but also contains several groups that can not be assigned to conservative ePK groups. Moreover, given the remarkable divergence of plasmodial kinases in respect to the human host kinome and the fact that several plasmodial kinases have been identified that are essential for the intraerythrocytic developmental cycle, these parasite enzymes represent auspicious targets for antimalarial regimens. Despite elaborate investigations on several other ePK groups, merely scant research has been conducted regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family, PfCLK-1-4. In other eukaryotes, CLKs are involved in mRNA processing and splicing by means of phosphorylation of serine/arginine-rich (SR) proteins, which are crucial components of the splicing machinery in the alternative splicing pathway. All four PfCLKs are abundantly expressed in asexual parasites and gametocytes, and stage-specific expression profiles of PfCLK-1 and PfCLK-2 exhibited nucleus-associated localization and an association with phosphorylation activity. In the course of this study, PfCLK-3 and PfCLK-4 were functionally characterized by indirect immunofluorescence, Western blot analysis and kinase activity assays. These data confirm that the two kinases are primarily expressed in the nucleus of trophozoites and both kinases possess in vitro phosphorylation activity on physiological substrates. Likewise PfCLK-1 and PfCLK-2, reverse genetic studies exhibited the indispensability of both PfCLKs on the asexual life cycle of P. falciparum, rendering them as potential candidates for antiplasmodial strategies. Moreover, this study was conducted to identify putative SR proteins as substrates of all four PfCLKs. Previous alignments revealed a significant homology of the parasite CLKs to yeast SR protein kinase Sky1p. Kinase activity assays showed in vitro phosphorylation of the yeast Sky1p substrate and SR protein Npl3p by precipitated PfCLKs. In addition, four homologous plasmodial SR proteins were identified that are phosphorylated by PfCLKs in vitro: PfASF-1, PFSRSF12, PfSFRS4 and PfSR-1. All four parasite SR splicing factors are predominantly expressed in the nuclei of trophozoites. For PfCLK-1, a co-localization with the SR proteins was verified. Finally, a library of human and microbial CLK inhibitors and the antiseptic chlorhexidine (CHX) was screened to determine their inhibitory effect on different parasite life cycle stages and on the PfCLKs specifically. Five inhibitors out of 63 compounds from the investigated library were selected that show a moderate inhibition on asexual life cycle stages with IC50 values ranging between approximately 4 and 8 µM. Noteworthy, these inhibitors belong to the substance classes of aminopyrimidines or oxo-β-carbolines. Actually, the antibiotic compound CHX demonstrated an IC50 in the low nanomolar range. Stage-of-inhibition assays revealed that CHX severely affects the formation of schizonts. All of the selected CLKs inhibitors also affect gametocytogenesis as well as gametogenesis, as scrutinized in gametocyte toxicity assays and exflagellation assays, respectively. Kinase activity assays confirm a specific inhibition of CLK-mediated phosphorylation of all four kinases, when the CLK inhibitors are applied on immunoprecipitated PfCLKs. These findings on PfCLK-inhibiting compounds are initial attempts to determine putative antimalarial compounds targeting the PfCLKs. Moreover, these results provide an effective means to generate chemical kinase KOs in order to phenotypically study the role of the PfCLKs especially in splicing events and mRNA metabolism. This approach of functionally characterizing the CLKs in P. falciparum is of particular interest since the malarial spliceosome is still poorly understood and will gain further insight into the parasite splicing machinery. / Neben HIV und Tuberkulose stellt Malaria vor allem in Entwicklungsländern immer noch eine der verheerendsten Infektionskrankheiten dar, wobei Plasmodium falciparum für die oft tödlich verlaufende Form der Malaria tropica verantwortlich ist. Sie ist eine der Hauptgründe für Mortalität und Morbitität, von der vor allem schwangere Frauen und Kinder unter fünf Jahren am schlimmsten betroffen sind. Das Fehlen eines effektiven und ungefährlichen Impfstoffes und sich schnell ausbreitende Medikamentenresistenzen erschweren die Bekämpfung von Malaria mit Arzneimitteln. Darüber hinaus beeinträchtigen die schlechten sozioökonomischen Bedingungen und der mangelhafte Zustand des Gesundheitssystems in Malaria-endemischen Ländern die Elimination dieser tödlichen Tropenkrankheit in hohem Maße. Die Malariaforschung ist immer noch auf der Suche nach vielversprechenden Angriffspunkten im Parasiten, die widerstandsfähig gegenüber sich entwickelnden resistenz-vermittelnden Mutationen sind und dennoch erschwingliche und verträgliche Chemotherapeutika gegen Malaria darstellen. Das Kinom des Parasiten besteht aus Vertretern der meisten eukaryotischen Proteinkinase-Gruppen und enthält zudem einige Gruppen, die keiner der konventionellen Gruppen zuordenbar sind. Darüber hinaus stellen Kinasen vielversprechende Angriffspunkte für Malariamedikamente dar, da das Parasitenkinom bemerkenswerte Divergenzen gegenüber dem Wirtskinom aufweist und zudem einige Parasitenkinasen identifiziert wurden, die unerlässlich für den Replikationszyklus von asexuellen Parasiten sind. Trotz umfangreicher Untersuchungen anderer Kinasegruppen des Parasiten wurden die vier identifizierten Vertreter der Zyklin-abhängige-Kinase-ähnlichen Kinasen (cyclin-dependent kinase-like kinases, CLKs) bisher kaum untersucht. In anderen Eukaryoten sind CLKs an der mRNA-Prozessierung und am Spleißen durch die Phosphorylierung von Serin/Arginin-reichen (SR-) Proteinen beteiligt, welche wiederum Komponenten der Spleißmaschinerie sind. Alle vier PfCLKs sind abundant exprimiert in asexuellen Parasiten sowie Gametozyten, und stadien-spezifische Expressionsprofile von PfCLK-1 und PfCLK-2 zeigten eine Kern-assoziierte Expression sowie Phosphorylierungsaktivität in in vitro-Aktivitätsstudien. Im Verlauf dieser Studie wurden PfCLK-3 und PfCLK-4 mittels indirekter Immunfluoreszenzstudien, Western Blot-Analysen und Kinaseaktivitätsassays funktionell charakterisiert. Die Ergebnisse bestätigen, dass beide Kinasen vorrangig im Nukleus von P. falciparum-Trophozoiten lokalisiert sind und Phosphorylierungsaktivität gegenüber physiologischen Substraten in vitro aufweisen. Ähnlich wie für PfCLK-1 und PfCLK-2 konnte in Reverse-Genetik-Studien gezeigt werden, dass sowohl PfCLK-3 als auch PfCLK-4 essentiell für den asexuellen Replikationszyklus von P. falciparum sind. Dieser Umstand macht beide Kinasen zu potenziellen Angriffspunkten für antiplasmodiale Bekämpfungsstrategien. Des Weiteren wurde diese Studie ausgeführt, um mögliche Interaktionspartner aller vier PfCLKs zu identifizieren. Vorangegangene Sequenzabgleiche brachten eine bemerkenswerte Homologie der Parasiten-CLKs zur SR-Proteinkinase Sky1p der Bäckerhefe zu Tage. Kinaseaktivitätsassays zeigten Phosphorylierung des Sky1p-Substrates und SR-Proteins Npl3p durch präzipitierte PfCLKs in vitro. Außerdem wurden vier homologe plasmodiale SR-Proteine bzw. mutmaßliche Spleißfaktoren identifiziert, die ebenso von den PfCLKs in vitro phosphoryliert werden: PfASF-1, PFSRSF12, PfSFRS4 und PfSR-1. Alle vier Parasiten-Spleißfaktoren sind vorwiegend in Kernen von Trophozoiten exprimiert. Für PfCLK-1 konnte eine Ko-Lokalisation mit den SR-Proteinen nachgewiesen werden. Abschließend wurden eine Sammlung humaner und mikrobieller CLK-Inhibitoren sowie das Antiseptikum Chlorhexidin (CHX) auf ihren hemmenden Effekt auf verschiedene Lebenszyklusstadien von P. falciparum und gezielt auf die PfCLKs überprüft. Es wurden fünf Inhibitoren aus einer Sammlung von 63 Substanzen auserwählt, die eine moderate Hemmung auf asexuelle Lebenszyklusstadien aufwiesen, mit IC50-Werten zwischen ungefähr 4 und 8 µM. Das Antibiotikum CHX zeigte sogar einen IC50-Wert im niedrigen nanomolaren Bereich. Nachfolgende Stage-of-Inhibition-Assays deckten auf, dass CHX die Entwicklung von Schizonten enorm beeinträchtigt. Wie in Gametozyten-Toxizitätsassays und Exflagellationsassays ermittelt wurde, hemmen alle ausgewählten CLK-Inhibitoren ferner sowohl die Gametozytogenese als auch die Gametogenese. Kinaseaktivitätsassays bestätigen eine spezifische Hemmung der CLK-vermittelten Phosphorylierung aller vier Kinasen, wenn die CLK-Inhibitoren auf immunopräzipitierte PfCLKs angewendet wurden. Diese Erkenntnisse über PfCLK-hemmende Substanzen sind erste Ansätze, um mögliche Wirkstoffe gegen Malaria zu finden, die die PfCLKs als Angriffspunkte haben. Zudem stellen diese Resultate ein wirksames Mittel zur Verfügung, um chemische Kinase-Knockout-Parasiten zu generieren. Diese können dann verwendet werden, um die Rolle der PfCLKs vor allen in Bezug auf Spleißvorgänge und mRNA-Metabolismus phänotypisch zu untersuchen. Der Ansatz, die CLKs des Parasiten funktionell zu charakterisieren, ist von besonderem Interesse, da das Spleißosom des Malariaparasiten immer noch nicht ausreichend erforscht ist. Dadurch können weitere Erkenntnisse über die Spleißmaschinerie des Parasiten gewonnen werden.
8

Epigenetic programming by prenatal stress in female serotonin transporter deficient mice / Epigenetische Programmierung durch Pränatalstress in weiblichen Serotonintransporter-defizienten Mäusen

Schraut, Karla-Gerlinde January 2015 (has links) (PDF)
Early life stress, including exposure to prenatal stress (PS), has been shown to affect the developing brain and induce severe effects on emotional health in later life, concomitant with an increased risk for psychopathology. However, some individuals are more vulnerable to early-life stress, while others adapt successfully, i.e. they are resilient and do not succumb to adversity. The molecular substrates promoting resilience in some individuals and vulnerability in other individuals are as yet poorly investigated. A polymorphism in the serotonin transporter gene (5­HTT/SLC6A4) has been suggested to play a modulatory role in mediating the effects of early-life adversity on psychopathology, thereby rendering carriers of the lower-expressing short (s)-allele more vulnerable to developmental adversity, while long (l)-allele carriers are relatively resilient. The molecular mechanisms underlying this gene x environment interaction (GxE) are not well understood, however, epigenetic mechanisms such as DNA methylation and histone modifications have been discussed to contribute as they are at the interface of environment and the genome. Moreover, developmental epigenetic programming has also been postulated to underlie differential vulnerability/resilience independent of genetic variation. The present work comprises two projects investigating the effects of prenatal maternal restraint stress in 5-HTT deficient mice. In the first study, we examined to which extent previously observed changes in behavior and hippocampal gene expression of female 5-Htt+/- prenatally stressed (PS) offspring were associated with changes in DNA methylation patterns. Additionally, we investigated the expression of genes involved in myelination in hippocampus and amygdala of those animals using RT-qPCR. The genome-wide hippocampal DNA methylation screening was performed using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip® Mouse Promoter 1.0R arrays. In order to correlate individual gene-specific DNA methylation, mRNA expression and behavior, we used hippocampal DNA from the same mice as assessed before. 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a part of which were also differentially expressed. More specifically, we identified a differentially methylated region in the Myelin basic protein (Mbp) gene, which was associated with Mbp expression in a 5-Htt-, PS- and 5-Htt x PS-dependent manner. Subsequent fine-mapping linked the methylation status of two specific CpG sites in this region to Mbp expression and anxiety-related behavior. We furthermore found that not only the expression of Mbp but of large gene set associated with myelination was affected by a 5-Htt x PS interaction in a brain-region specific manner. In conclusion, hippocampal DNA methylation patterns and expression profiles of female PS 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are associated with changes in gene promoter methylation, and processes associated with myelination contribute to the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. In the second study, we aimed at investing the molecular substrates underlying resilience to PS. For this purpose, we exposed 5-Htt+/+ dams to the same restraint stress paradigm and investigated the effects of PS on depression- and anxiety-like behavior and corticosterone (CORT) secretion at baseline and after acute restraint stress in female 5-Htt+/+ and 5-Htt+/- offspring. We found that PS affected the offspring’s social behavior in a negative manner. When specifically examining those PS animals, we grouped the PS offspring of each genotype into a social, resilient and an unsocial, vulnerable group. While anxiety-like behavior in the EPM was reduced in unsocial, but not social, PS 5-Htt+/+ animals when compared to controls, this pattern could not be found in animals of the other genotype, indicating that social anxiety and state anxiety in the EPM were independent of each other. We then assessed genome-wide hippocampal gene expression profiles using mRNA sequencing in order to identify pathways and gene ontology (GO) terms enriched due to 5-Htt genotype (G), PS exposure (E) and their interaction (GxE) as well as enriched in social, but not unsocial, PS offspring, and vice versa. Numerous genes were affected by 5-Htt genotype, PS and most of all a GxE-interaction. Enrichment analysis using enrichr identified that the genotype affected mitochondrial respiration, while GxE-interaction-affected processes associated primarily with myelination and chromatin remodeling. We furthermore found that 5-Htt+/- mice showed profound expression changes of numerous genes in a genomic region located 10 mio kb upstream of the 5 Htt locus on the same chromosome. When looking at social vs. unsocial mice, we found that a much higher number of genes was regulated in 5 Htt+/- animals than in 5-Htt+/+ animals, reflecting the impact of GxE-interaction. Double the number of genes was regulated in social PS vs. control mice when compared to unsocial PS vs. control in both genotypes, suggesting that the successful adaption to PS might have required more active processes from the social group than the reaction to PS from the unsocial group. This notion is supported by the up-regulation of mitochondrial respiration in social, but not in unsocial, PS 5-Htt+/- mice when compared to controls, as those animals might have been able to raise energy resources the unsocial group was not. Next to this, processes associated with myelination seemed to be down-regulated in social 5-Htt+/- mice, but not in unsocial animals, when compared to controls. Taken together, PS exposure affected sociability and anxiety-like behavior dependent on the 5-Htt genotype in female offspring. Processes associated with myelination and epigenetic mechanisms involved in chromatin remodeling seemed be affected in a GxE-dependent manner in the hippocampus of these offspring. Our transcriptome data furthermore suggest that mitochondrial respiration and, with this, energy metabolism might be altered in 5-Htt+/- offspring when compared to 5-Htt+/+ offspring. Moreover, myelination and mitochondrial respiration might contribute to resilience towards PS exposure in 5-Htt+/- offspring, possibly by affecting brain connectivity and energy capabilities. / Frühes Stresserleben wie zum Beispiel in Form von pränatalem Stress (PS) kann sich auf die Entwicklung des Gehirns auswirken und einen gravierenden Einfluss auf die emotionale Gesundheit im Erwachsenenaltern ausüben, was mit einem erhöhten Risiko für eine Psychopathologie einhergeht. Manche Individuen sind jedoch frühem Stresserleben gegenüber vulnerabler, während andere Individuen sich erfolgreich anpassen, d.h. resilient sind, und widrigen Umständen nicht erliegen. Die molekularen Substrate, die Resilienz in manchen und Vulnerabilität in anderen Individuen bedingen, sind bisher nur unzureichend erforscht. Ein Polymorphismus im Serotonintransportergen (5-HTT/SLC6A4) soll eine modulierende Rolle in der Vermittlung der Effekte von frühem Stresserleben auf die Entwicklung einer Psychopathologie spielen, wobei Träger des niedrig-exprimierenden kurzen (s-) Allels empfänglicher gegenüber Stresserlebnissen während der Entwicklung sind, während Träger des langen (l-) Allels als resilienter gelten. Die molekularen Mechanismen, die dieser Gen-Umwelt-Interaktion zu Grunde liegen, sind noch nicht aufgeklärt. Epigenetische Mechanismen wie DNA-Methylierung und Histonmodifikationen könnten jedoch dazu beitragen, da sie an der Schnittfläche zwischen Genom und Umwelt liegen. Des Weiteren wird vermutet, dass epigenetische Programmierung während der Entwicklung unabhängig von genetischer Varianz zur Ausbildung von Resilienz bzw. Vulnerabilität beiträgt. Die vorliegende Arbeit umfasst zwei Projekte, in denen die Auswirkungen von pränatalem „maternal restraint“ Stress in 5-HTT defizienten Mäusen behandelt werden. In der ersten Studie wurde untersucht, in ob und in welchem Maß zuvor beobachtete Veränderungen im Verhalten und in der hippocampalen Genexpression in weiblichen PS Mäusen mit Veränderungen in DNA-Methylierungsmustern einhergingen. Des Weiteren untersuchten wir mittels RT-qPCR die Expression von Genen, die mit Myelinisierung im Zusammenhang stehen, im Hippocampus und in der Amygdala dieser Tiere. Ein genomweites hippocampales DNA-Methylierungsscreening wurde durchgeführt indem methylierte DNA mit Hilfe der Methyl-DNA-Immunoprezipitation angereichert und auf Affymetrix GeneChip® Mouse Promoter 1.0R Arrays aufgetragen wurde. Um individuelle genspezifische DNA-Methylierung, mRNA-Expression und Verhalten miteinander korrelieren zu können, wurde hippocampale DNA derselben Mäuse, die zuvor getestet wurden, dafür eingesetzt. Der 5-Htt Genotyp, PS und ihre Interaktion veränderten die DNA-Methylierung von zahlreichen Genen, wovon ein Teil auch differentiell exprimiert war. Um genau zu sein, identifizierten wir eine differentiell methylierte Region im Myelin basic protein (Mbp) Gen, was mit Mbp Expressionsveränderungen auf Grund eines 5-Htt-, PS und eines 5-Htt x PS-Effekts einherging war. Eine anschließende genauere Untersuchung dieser Region zeigte eine Assoziation zwischen dem Methylierungsstatus zweier spezifischer CpG-Stellen mit der Mbp Expression und Angst-ähnlichem Verhalten. Es zeigte sich weiterhin, dass nicht nur die Expression von Mbp sondern eines ganzes Satzes an Genen, die mit Myelinisierung im Zusammenhang stehen, durch eine 5-Htt x PS-Interaktion in einer Gehirnregionen-spezifischen Weise verändert war. Zusammenfassend weisen die hippocampalen DNA-Methylierungsmuster und Genexpressionprofile der weiblichen PS 5-Htt+/- Mäuse darauf hin, dass eindeutige molekulare Mechanismen, wovon einige mit Veränderungen in der Promotermethylierung einhergingen, und Prozesse, die mit Myelinisierung im Zusammenhang stehen, zu den Verhaltenseffekten des 5-Htt Genotyps, PS-Exposition und ihrer Interaktion beitragen. Die zweite Studie hatte zum Ziel, molekulare Substrate, die einer Resilienz gegenüber PS zu Grunde liegen, zu erforschen. Zu diesem Zweck wandten wir das gleiche „restrainst stress“ Paradigma wie zuvor auf schwangere 5-Htt+/+ Weibchen an und untersuchten die PS-Effekte auf Depressions- und Angst-ähnliches Verhalten sowie auf die Corticosteronausschüttung im Grundzustand und nach akutem „restraint stress“ im weiblichen 5-Htt+/+ und 5-Htt+/- Nachwuchs. Wir stellten fest, dass sich PS negativ auf das Sozialverhalten auswirkte. Als wir die PS Tiere genauer untersuchten, teilten wir den PS Nachwuchs jeden Genotyps in je eine soziale, resiliente und eine unsoziale, vulnerable Gruppe ein. Während das Angst-ähnliche Verhalten im EPM in unsozialen, aber nicht sozialen, 5-Htt+/+ PS Tieren im Vergleich zu Kontrolltieren verringert war, konnte man diesen Effekt im anderen untersuchten Genotyp nicht finden, was darauf hinweist, dass soziale Ängstlichkeit und die sogenannte „state anxiety“, wie in potentiell angsteinflößenden Situationen zu Tage tritt, unabhängig voneinander funktionierende Prozesse sind. Wir erstellten anschließend mittels mRNA-Sequenzierung genomweite hippocampale Genexpressionsprofile um Netzwerke und Gene Ontology (GO) Terms zu identifizieren, die auf Grund des 5-Htt Genotyps (G), der PS-Exposition (E) oder einer Interaktion (GxE) sowie in sozialem, aber nicht in unsozialem, PS Nachwuchs und umgekehrt angereichert waren. Die Expression zahlreicher Gene war durch den 5-Htt Genotyp, der PS-Exposition und vor allem einer GxE-Interaktion verändert. Durch eine Anreicherungsanalyse mittels enrichr stellten wir fest, dass die mitochondriale Atmungskette vom Genotyp beeinflusst wurde, wohingegen sich die GxE-Interaktion vor allem auf Prozesse, die mit Myelinisierung und Chromatinumgestaltung in Verbindung standen, auswirkte. Darüber hinaus fanden wir in 5-Htt+/- Mäusen höchst signifikante Expressionsveränderungen zahlreicher Gene, die in einer genomischen Region 10 mio kb in 5‘ Richtung des 5-Htt Lokus auf dem gleichen Chromosom lagen. Als wir soziale und unsoziale PS Mäuse verglichen, zeigte sich, dass eine deutlich höhere Anzahl an Genen in 5-Htt+/- Mäusen als in 5-Htt+/+ Mäusen reguliert war, was die Auswirkungen der GxE-Interaktion widerspiegelt. In beiden Genotypen war die doppelte Anzahl an Genen in sozialen PS vs. Kontroll-Tieren im Vergleich zu unsozialen PS vs. Kontroll-Tieren verändert, was darauf hinweist, dass eine erfolgreiche Anpassung an PS den sozialen Tieren möglicherweise mehr aktive Prozesse abverlangte als die Reaktion auf PS in der unsozialen Gruppe. Diese Vorstellung wird durch eine Steigerung der mitochondrialen Atmungskette auf mRNA-Ebene in sozialen, aber nicht in unsozialen, 5-Htt+/- Mäusen im Vergleich zu Kontrollmäusen unterstützt, da diese Tiere in der Lage gewesen sein könnten, Energieressourcen zu mobilisieren, die den unsozialen Tieren nicht zur Verfügung standen. Des Weiteren schienen Prozesse, die mit Myelinisierung im Zusammenhang stehen, in sozialen, aber nicht in unsozialen, PS 5-Htt+/- Mäusen im Vergleich zu Kontrollmäusen herunterreguliert zu sein. Zusammengefasst wirkte sich die PS-Exposition auf das Sozial- und Angst-ähnliche Verhalten abhängig vom 5-Htt Genotyp im weiblichen Nachwuchs aus. Prozesse, die mit Myelinisierung im Zusammenhang stehen, und epigenetische Mechanismen, die in der Chromatinumgestaltung beteiligt sind, schienen von einer GxE-Interaktion im Hippocampus dieser Tiere beeinflusst zu sein. Unsere Transkriptomdaten gaben des weiteren Hinweise darauf, dass die mitochondriale Atmungskette, und damit vermutlich auch der Energiemetabolismus, in 5-Htt+/- Tieren im Vergleich zu 5-Htt+/+ Tieren verändert sein könnte. Ferner könnten Veränderungen in der Myelinisierung sowie in der mitochondrialen Atmungskette zur Resilienzentwicklung gegenüber PS in 5-Htt+/- Mäusen beitragen, möglicherweise durch Veränderungen in der Gehirnkonnektivität und in den zu mobilisierenden Energieressourcen.
9

Neuronal basis of temporal polyethism and sky-compass based navigation in \(Cataglyphis\) desert ants / Die neuronale Grundlage von Alterspolyethismus und Himmelskompassnavigation in der Wüstenameise \(Cataglyphis\)

Schmitt, Franziska January 2017 (has links) (PDF)
Desert ants of the genus Cataglyphis (Formicinae) are widely distributed in arid areas of the palearctic ecozone. Their habitats range from relatively cluttered environments in the Mediterranean area to almost landmark free deserts. Due to their sophisticated navigational toolkit, mainly based on the sky-compass, they were studied extensively for the last 4 decades and are an exceptional model organism for navigation. Cataglyphis ants exhibit a temporal polyethism: interior workers stay inside the dark nest and serve as repletes for the first ∼2 weeks of their adult life (interior I). They then switch to nursing and nest maintenance (interior II) until they transition to become day-active outdoor foragers after ∼4 weeks. The latter switch in tasks involves a transition phase of ∼2-3 days during which the ants perform learning and orientation walks. Only after this last phase do the ants start to scavenge for food as foragers. In this present thesis I address two main questions using Cataglyphis desert ants as a model organism: 1. What are the underlying mechanisms of temporal polyethism? 2. What is the neuronal basis of sky-compass based navigation in Cataglyphis ants? Neuropeptides are important regulators of insect physiology and behavior and as such are promising candidates regarding the regulation of temporal polyethism in Cataglyphis ants. Neuropeptides are processed from large precursor proteins and undergo substantial post-translational modifications. Therefore, it is crucial to biochemically identify annotated peptides. As hardly any peptide data are available for ants and no relevant genomic data has been recorded for Cataglyphis, I started out to identify the neuropeptidome of adult Camponotus floridanus (Formicinae) workers (manuscript 1). This resulted in the first neuropeptidome described in an ant species – 39 neuropeptides out of 18 peptide families. Employing a targeted approach, I identified allatostatin A (AstA), allatotropin (AT), short neuropeptide F (sNPF) and tachykinin (TK) using mass spectrometry and immunohistology to investigate the distribution of AstA, AT and TK in the brain (manuscript 2). All three peptides are localized in the central complex, a brain center for sensory integration and high-order control of locomotion behavior. In addition, AstA and TK were also found in visual and olfactory input regions and in the mushroom bodies, the centers for learning and memory formation. Comparing the TK immunostaining in the brain of 1, 7 and 14 days old dark kept animals revealed that the distribution in the central complex changes, most prominently in the 14 day old group. In the Drosophila central complex TK modulates locomotor activity levels. I therefore hypothesize that TK is involved in the internal regulation of the interior I–interior II transition which occurs after ∼2 weeks of age. I designed a behavioral setup to test the effect of neuropeptides on the two traits: ’locomotor activity level’ and ’phototaxis’ (manuscript 3). The test showed that interior I ants are less active than interior II ants, which again are less active than foragers. Furthermore, interior ants are negatively phototactic compared to a higher frequency of positive phototaxis in foragers. Testing the influence of AstA and AT on the ants’ behavior revealed a stage-specific effect: while interior I behavior is not obviously influenced, foragers become positively phototactic and more active after AT injection and less active after AstA injection. I further tested the effect of light exposure on the two behavioral traits of interior workers and show that it rises locomotor activity and results in decreased negative phototaxis in interior ants. However, both interior stages are still more negatively phototactic than foragers and only the activity level of interior II ants is raised to the forager level. These results support the hypothesis that neuropeptides and light influence behavior in a stage-specific manner. The second objective of this thesis was to investigate the neuronal basis of skycompass navigation in Cataglyphis (manuscript 4). Anatomical localization of the sky-compass pathway revealed that its general organization is highly similar to other insect species. I further focused on giant synapses in the lateral complex, the last relay station before sky-compass information enters the central complex. A comparison of their numbers between newly eclosed ants and foragers discloses a rise in synapse numbers from indoor worker to forager, suggesting task-related synaptic plasticity in the sky-compass pathway. Subsequently I compared synapse numbers in light preexposed ants and in dark-kept, aged ants. This experiment showed that light as opposed to age is necessary and sufficient to trigger this rise in synapse number. The number of newly formed synapses further depends on the spectral properties of the light to which the ants were exposed to. Taken together, I described neuropeptides in C. floridanus and C. fortis, and provided first evidence that they influence temporal polyethism in Cataglyphis ants. I further showed that the extent to which neuropeptides and light can influence behavior depends on the animals’ state, suggesting that the system is only responsive under certain circumstances. These results provided first insight into the neuronal regulation of temporal polyethism in Cataglyphis. Furthermore, I characterized the neuronal substrate for sky-compass navigation for the first time in Cataglyphis. The high level of structural synaptic plasticity in this pathway linked to the interior–forager transition might be particularly relevant for the initial calibration of the ants’ compass system. / Wüstenameisen der Gattung Cataglyphis sind weit verbreitet in ariden Gebieten der paläarktischen Ökozone. Die von ihnen bewohnten Habitate reichen von landmarkenreichen Arealen im Mittelmeerraum, zu beinahe landmarkenfreien Wüstengebieten. Aufgrund ihres hochentwickelten Navigationssystems, welches größtenteils auf dem Himmelskompass basiert, wurden sie in den letzten 4 Jahrzehnten extensiv studiert und sind ein einzigartiges Modellsystem für Navigation. Cataglyphis weisen einen alterskorrelierten Polyethismus auf: Innendienstler dienen als Speichertiere für die ersten ∼2 Wochen ihres adulten Lebens (Interior I). Sie gehen daraufhin zu Brutpflege und Nestbau (Interior II) über bis sie nach ∼4 Wochen zu tagaktiver Furagiertätitkeit außerhalb ihres Nestes wechseln. Dieser letzte Übergang dauert ∼2-3 Tage und wird von den Ameisen genutzt, um Lernund Orientierungsläufe durchzuführen. In der vorliegenden Arbeit befasse ich mich vor allem mit zwei Fragen, die ich mit Hilfe von Cataglyphis als Modellorganismus beantworten möchte: 1. Welches sind die zugrunde liegenden Mechanismen des Alterspolyethismus? 2. Was ist die neuronale Grundlage von Navigation, die auf dem Himmelskompass basiert? Neuropeptide sind bedeutende Regulatoren der Physiologie und des Verhaltens von Insekten und als solche vielversprechende Kandidaten im Hinblick auf die Regulation des Alterspolyethismus in Cataglyphis Ameisen. Neuropeptide werden aus größeren Vorläuferproteinen herausgeschnitten und posttranslational stark modifiziert. Daher ist es wichtig, annotierte Peptide auch biochemisch zu identifizieren. Da für Ameisen kaum Peptiddaten zur Verfügung stehen und es zudem keine relevanten genomischen Daten für Cataglyphis gibt, identifizierte ich zunächst das Neuropeptidom adulter Camponotus floridanus (Formicinae) Arbeiterinnen (Manuskript 1). Daraus resultierte das erste Neuropeptidom, das für eine Ameisenart beschrieben wird—39 Neuropeptide aus 18 Peptidfamilien. In einer weiteren Studie identifizierte ich gezielt die Neuropeptidfamilien Allatostatin A (AstA), Allatotropin (AT), das kurze Neuropeptid F (sNPF) und Tachykinin (TK) mittels Massenspektroskopie und untersuchte die Verteilung von AstA, AT und TK im Gehirn mit Hilfe der Immunhistologie (Manuskript 2). Alle drei Peptide sind im Zentralkomplex lokalisiert, dem Gehirnzentrum welches sensorische Eingänge integriert und in einer übergeordneten Rolle Lokomotorverhalten steuert. AstA und TK sind zudem in den visuellen und olfaktorischen Eingangsregionen, sowie den Pilzkörpern, den Zentren für Lernen und Gedächtnisbildung, zu finden. Ein Vergleich der TK-Immunfärbung im Gehirn von 1, 7 und 14 Tage alten im Dunkeln gehaltenen Tieren zeigt, dass sich die Verteilung im Zentralkomplex verändert— dies ist besonders prominent in der 14 Tage alten Gruppe. In Drosophila moduliert TK im Zentralkomplex Lokomotoraktivität. Basierend darauf stelle ich die Hypothese auf, dass TK in der internen Regulierung des Übergangs von Interior I zu Interior II involviert ist, welchen die Tiere im Alter von ∼2 Wochen durchlaufen. Für eine dritte Studie konstruierte ich ein Verhaltenssetup um den Einfluss von Neuropeptiden und Licht auf die beiden Verhaltensmerkmale ’Lokomotoraktivität’ und ’Phototaxis’ zu testen (Manuskript 3). Der Test zeigte, dass Interior I Ameisen weniger aktiv sind als Interior II Ameisen, welche wiederum weniger aktiv sind als Furageure. Zudem sind Interior Ameisen negativ phototaktisch, verglichen mit einer häufiger zu beobachtenden positiven Phototaxis bei Furageuren. Im Test zeigte sich auch, dass der Einfluss von AstA und AT stadiumsspezifisch ist: während das Verhalten von Interior I Tieren nicht offensichtlich beeinflusst wird, werden Furageure durch die Injektion von AT positiv phototaktisch, sowie aktiver und AstA-Injektion führt zu geminderter Lokomotoraktivität. Darüber hinaus testete ich den Lichteinfluss auf beide Verhaltensmerkmale in den Innendienststadien und zeige, dass er Lokomotoraktivität steigert und in einer geminderten negativen Phototaxis resultiert. Beide Innendienststadien sind jedoch weiterhin negativer phototaktisch als Furageure und nur die Lokomotoraktivtät von Interior II Ameisen wird auf das Niveau von Furageuren angehoben. Diese Ergebnisse stützen die Hypothese, dass Neuropeptide und Licht stadiumsspezifisch Verhalten beeinflussen. Der zweite Aspekt dieser Thesis war es, die neuronale Grundlage der Himmelskompassnavigation in Cataglyphis aufzuklären (Manuskript 4). Die neuroanatomische Lokalisation der Himmelskompasssehbahn zeigt, dass die allgemeine Organisation dieser neuronalen Bahn der bei bisher untersuchten anderen Insekten stark ähnelt. Ich habe mich daraufhin auf Riesensynapsen im lateralen Komplex konzentriert, der letzten Verschaltungsstation ehe die Himmelskompassinformation in den Zentralkomplex übertragen wird. Ein Vergleich zwischen der Synapsenzahl in frisch geschlüpfte Ameisen und erfahrenen Furageueren zeigte einen Anstieg der Synapsenzahl von Innendienst zu Furaguer, was aufgabenabhängige synaptische Plastizität in der Himmelskompasssehbahn suggeriert. In einem weiteren Versuch verglich ich die Riesensynapsenzahlen lichtexponierter Tiere und dunkel gehaltener, gealteter Tiere. Dieses Experiment zeigte, dass der Zuwachs an Riesensynapsen durch den Lichteinfluss ausgelöst wird und keinen altersabhängigen Prozess darstellt. Zudem verändert sich die Anzahl der neu gebildeten Riesensynapsen in Abhängigkeit von den spektralen Eigenschaften des Lichts, dem die Ameisen ausgesetzt sind. Zusammengefasst beschrieb ich in dieser Thesis Neuropeptide in C. floridanus und Cataglyphis und lieferte erste Evidenz, dass diese den Alterspolyethismus in Cataglyphis beeinflussen. Zudem zeigte ich, dass das Ausmaß in dem Neuropeptide und Lichtexposition Verhalten beeinflussen können, stadiumsspezifisch ist. Dies suggeriert, dass das System nur unter bestimmten Bedingungen auf externe Einflüsse reagiert. Diese Ergebnisse lieferten erste wichtige Einblicke in die neuronale Grundlage von Alterspolyethismus in Cataglyphis. Zudem charakterisierte ich erstmals das neuronale Substrat der Himmelskompassnavigation in Cataglyphis. Das hohe Maß an synaptischer Plastizität in dieser Sehbahn beim Übergang von Innenzu Außendienst, könnte besondere Relevanz für die initiale Kalibrierung des Kompasssystems haben.
10

Effects of Transgenic Expression of Botulinum Toxins in Drosophila / Effekte der transgenen Expression von Botulinumtoxinen in Drosophila

Backhaus, Philipp January 2016 (has links) (PDF)
Clostridial neurotoxins (botulinum toxins and tetanus toxin) disrupt neurotransmitter release by cleaving neuronal SNARE proteins. We generated transgenic flies allowing for conditional expression of different botulinum toxins and evaluated their potential as tools for the analysis of synaptic and neuronal network function in Drosophila melanogaster by applying biochemical assays and behavioral analysis. On the biochemical level, cleavage assays in cultured Drosophila S2 cells were performed and the cleavage efficiency was assessed via western blot analysis. We found that each botulinum toxin cleaves its Drosophila SNARE substrate but with variable efficiency. To investigate the cleavage efficiency in vivo, we examined lethality, larval peristaltic movements and vision dependent motion behavior of adult Drosophila after tissue-specific conditional botulinum toxin expression. Our results show that botulinum toxin type B and botulinum toxin type C represent effective alternatives to established transgenic effectors, i.e. tetanus toxin, interfering with neuronal and non-neuronal cell function in Drosophila and constitute valuable tools for the analysis of synaptic and network function. / Die verschiedenen Toxine der Bakterienspezies Clostridium (Botulinumtoxine und Tetanustoxin) interferieren mit Neuroexozytose durch Proteolyse der SNARE-Proteine. Wir haben transgene Fliegen generiert, die die Möglichkeit bieten konditional verschiedene Botulinumtoxine zu exprimieren. Durch biochemische Untersuchungen und Verhaltensexperimente haben wir das Potential dieser Toxine als Werkzeuge für die Analyse von Synapsen- und Netzwerkfunktion in Drosophila evaluiert. Durch Western Blot-Analysen stellten wir eine variierende Proteolysierbarkeit der Drosophila SNARE-Substrate durch die verschiedenen Botulinumtoxine dar. In Vivo untersuchten wir die Auswirkungen einer Zell-spezifischen Expression auf die Motorik in Larven und auf die Sehfähigkeit in adulten Fliegen. Unsere Resultate zeigen, dass Botulinumtoxin Typ B und C vielversprechende Alternativen zu etablierten molekularen Werkzeugen, wie Tetanustoxin, darstellen, um synaptische Transmission oder höhere Netzwerkfunktionen aufzuschlüsseln. Hierbei führt Botulinumtoxin Typ B zu einem spezifischen Verlust von neuronaler Aktivität, während Botulinumtoxin Typ C mit nicht Neuronen-spezifischer Zellfunktion interferiert.

Page generated in 0.4111 seconds