Spelling suggestions: "subject:"échantillonnage référentiel"" "subject:"échantillonnage préférentielle""
1 |
Efficient sequential learning in structured and constrained environments / Apprentissage séquentiel efficace dans des environnements structurés avec contraintesCalandriello, Daniele 18 December 2017 (has links)
L'avantage principal des méthodes d'apprentissage non-paramétriques réside dans le fait que la nombre de degrés de libertés du modèle appris s'adapte automatiquement au nombre d'échantillons. Ces méthodes sont cependant limitées par le "fléau de la kernelisation": apprendre le modèle requière dans un premier temps de construire une matrice de similitude entre tous les échantillons. La complexité est alors quadratique en temps et espace, ce qui s'avère rapidement trop coûteux pour les jeux de données de grande dimension. Cependant, la dimension "effective" d'un jeu de donnée est bien souvent beaucoup plus petite que le nombre d'échantillons lui-même. Il est alors possible de substituer le jeu de donnée réel par un jeu de données de taille réduite (appelé "dictionnaire") composé exclusivement d'échantillons informatifs. Malheureusement, les méthodes avec garanties théoriques utilisant des dictionnaires comme "Ridge Leverage Score" (RLS) ont aussi une complexité quadratique. Dans cette thèse nous présentons une nouvelle méthode d'échantillonage RLS qui met à jour le dictionnaire séquentiellement en ne comparant chaque nouvel échantillon qu'avec le dictionnaire actuel, et non avec l'ensemble des échantillons passés. Nous montrons que la taille de tous les dictionnaires ainsi construits est de l'ordre de la dimension effective du jeu de données final, garantissant ainsi une complexité en temps et espace à chaque étape indépendante du nombre total d'échantillons. Cette méthode présente l’avantage de pouvoir être parallélisée. Enfin, nous montrons que de nombreux problèmes d'apprentissage non-paramétriques peuvent être résolus de manière approchée grâce à notre méthode. / The main advantage of non-parametric models is that the accuracy of the model (degrees of freedom) adapts to the number of samples. The main drawback is the so-called "curse of kernelization": to learn the model we must first compute a similarity matrix among all samples, which requires quadratic space and time and is unfeasible for large datasets. Nonetheless the underlying effective dimension (effective d.o.f.) of the dataset is often much smaller than its size, and we can replace the dataset with a subset (dictionary) of highly informative samples. Unfortunately, fast data-oblivious selection methods (e.g., uniform sampling) almost always discard useful information, while data-adaptive methods that provably construct an accurate dictionary, such as ridge leverage score (RLS) sampling, have a quadratic time/space cost. In this thesis we introduce a new single-pass streaming RLS sampling approach that sequentially construct the dictionary, where each step compares a new sample only with the current intermediate dictionary and not all past samples. We prove that the size of all intermediate dictionaries scales only with the effective dimension of the dataset, and therefore guarantee a per-step time and space complexity independent from the number of samples. This reduces the overall time required to construct provably accurate dictionaries from quadratic to near-linear, or even logarithmic when parallelized. Finally, for many non-parametric learning problems (e.g., K-PCA, graph SSL, online kernel learning) we we show that we can can use the generated dictionaries to compute approximate solutions in near-linear that are both provably accurate and empirically competitive.
|
2 |
Simulation d'évènements rares par Monte Carlo dans les réseaux hautement fiables / Rare event simulation using Monte Carlo in highly reliable networksSaggadi, Samira 08 July 2013 (has links)
Le calcul de la fiabilité des réseaux est en général un problème NP-difficile. On peut par exemple s’intéresser à la fiabilité des systèmes de télécommunications où l'on veut évaluer la probabilité qu’un groupe sélectionné de nœuds peuvent communiquer. Dans ce cas, un ensemble de nœuds déconnectés peut avoir des conséquences critiques, que ce soit financières ou au niveau de la sécurité. Une estimation précise de la fiabilité est ainsi nécessaire. Dans le cadre de ce travail, on s'intéresse à l’étude et au calcul de la fiabilité des réseaux hautement fiables. Dans ce cas la défiabilité est très petite, ce qui rend l’approche standard de Monte Carlo inutile, car elle nécessite un grand nombre d’itérations. Pour une bonne estimation de la fiabilité des réseaux au moindre coût, nous avons développé de nouvelles techniques de simulation basées sur la réduction de variance par échantillonnage préférentiel. / Network reliability determination, is an NP-hard problem. For instance, in telecommunications, it is desired to evaluate the probability that a selected group of nodes communicate or not. In this case, a set of disconnected nodes can lead to critical financials security consequences. A precise estimation of the reliability is, therefore, needed. In this work, we are interested in the study and the calculation of the reliability of highly reliable networks. In this case the unreliability is very small, which makes the standard Monte Carlo approach useless, because it requires a large number of iterations. For a good estimation of system reliability with minimum cost, we have developed new simulation techniques based on variance reduction using importance sampling.
|
3 |
Nouvelles méthodes d'inférence de l'histoire démographique à partir de données génétiques / New methods for inference on demographic history from genetic dataMerle, Coralie 12 December 2016 (has links)
Cette thèse consiste à améliorer les outils statistiques adaptés à des modèles stochastiques de génétiques des populations et de développer des méthodes statistiques adaptées à des données génétiques de nouvelle génération. Pour un modèle paramétrique basé sur le coalescent, la vraisemblance en un point de l'espace des paramètres s'écrit comme la somme des probabilités de toutes les histoires (généalogies munies de mutations) possibles de l'échantillon observé. À l'heure actuelle, les meilleures méthodes d'inférence des paramètres de ce type de modèles sont les méthodes bayésiennes approchées et l'approximation de la fonction de vraisemblance.L'algorithme d'échantillonnage préférentiel séquentiel (SIS) estime la vraisemblance, en parcourant de manière efficace l'espace latent de ces histoires. Dans ce schéma, la distribution d'importance propose les histoires de l'échantillon observé les plus probables possibles. Cette technique est lourde en temps de calcul mais fournit des estimations par maximum de vraisemblance d'une grande précision.Les modèles que nous souhaitons inférer incluent des variations de la taille de la population. Les méthodes d'IS ne sont pas efficaces pour des modèles en déséquilibre car les distributions d'importance ont été développées pour une population de taille constante au cours du temps. Le temps de calcul augmente fortement pour la même précision de l'estimation de la vraisemblance. La première contribution de cette thèse a consisté à explorer l'algorithme SIS avec ré-échantillonnage (SISR). L'idée est de ré-échantillonner de façon à apprendre quelles sont les histoires proposées par la distribution d'importance qui seront les plus probables avant d'avoir terminé leur simulation et diminuer le temps de calcul. Par ailleurs, nous avons proposé une nouvelle distribution de ré-échantillonnage, tirant profit de l'information contenue dans la vraisemblance composite par paire de l'échantillon.Le développement récent des technologies de séquençage à haut débit a révolutionné la génération de données de polymorphisme chez de nombreux organismes. Les méthodes d'inférence classiques de maximum de vraisemblance ou basées sur le Sites Frequency Spectrum, adaptées à des jeux de données de polymorphisme génétique de quelques loci, supposent l'indépendance des généalogies des loci. Pour tirer parti de données beaucoup plus denses sur le génome, nous considérons la dépendance des généalogies sur des positions voisines du génome et modéliser la recombinaison génétique. Alors, la vraisemblance prend la forme d'une intégrale sur tous les graphes de recombinaison ancestraux possibles pour les séquences échantillonnées, un espace de bien plus grande dimension que l'espace des généalogies. Les méthodes d'inférence basées sur la vraisemblance ne peuvent plus être utilisées sans plus d'approximations. De nombreuses méthodes infèrent les changements historiques de la taille de la population mais ne considèrent pas la complexité du modèle ajusté. Même si certaines proposent un contrôle d'un potentiel sur-ajustement du modèle, à notre connaissance, aucune procédure de choix de modèle entre des modèles démographiques de complexité différente n'a été proposée à partir de longueurs de segments identiques. Nous nous concentrons sur un modèle de taille de population constante et un modèle de population ayant subit un unique changement de taille dans le passé. Puisque ces modèles sont emboîtés, la deuxième contribution de cette thèse a consisté à développer un critère de choix de modèle pénalisé basé sur la comparaison d'homozygotie haplotypique observée et théorique. Notre pénalisation, reposant sur des indices de sensibilité de Sobol, est liée à la complexité du modèle. Ce critère pénalisé de choix de modèle nous a permis de choisir entre un modèle de taille de population constante ou présentant un changement passé de la taille de la population sur des jeux de données simulés et sur un jeux de données de vaches. / This thesis aims to improve statistical methods suitable for stochastic models of population genetics and to develop statistical methods adapted to next generation sequencing data.Sequential importance sampling algorithms have been defined to estimate likelihoods in models of ancestral population processes. However, these algorithms are based on features of the models with constant population size, and become inefficient when the population size varies in time, making likelihood-based inferences difficult in many demographic situations. In the first contribution of this thesis, we modify a previous sequential importance sampling algorithm to improve the efficiency of the likelihood estimation. Our procedure is still based on features of the model with constant size, but uses a resampling technique with a new resampling probability distribution depending on the pairwise composite likelihood. We tested our algorithm, called sequential importance sampling with resampling (SISR) on simulated data sets under different demographic cases. In most cases, we divided the computational cost by two for the same accuracy of inference, in some cases even by one hundred. This work provides the first assessment of the impact of such resampling techniques on parameter inference using sequential importance sampling, and extends the range of situations where likelihood inferences can be easily performed.The recent development of high-throughput sequencing technologies has revolutionized the generation of genetic data for many organisms : genome wide sequence data are now available. Classical inference methods (maximum likelihood methods (MCMC, IS), methods based on the Sites Frequency Spectrum (SFS)) suitable for polymorphism data sets of some loci assume that the genealogies of the loci are independent. To take advantage of genome wide sequence data with known genome, we need to consider the dependency of genealogies of adjacent positions in the genome. Thus, when we model recombination, the likelihood takes the form of an integral over all possible ancestral recombination graph for the sampled sequences. This space is of much larger dimension than the genealogies space, to the extent that we cannot handle likelihood-based inference while modeling recombination without further approximations.Several methods infer the historical changes in the effective population size but do not consider the complexity of the demographic model fitted.Even if some of them propose a control for potential over-fitting, to the best of our knowledge, no model choice procedure between demographic models of different complexity have been proposed based on IBS segment lengths. The aim of the second contribution of this thesis is to overcome this lack by proposing a model choice procedure between demographic models of different complexity. We focus on a simple model of constant population size and a slightly more complex model with a single past change in the population size.Since these models are embedded, we developed a penalized model choice criterion based on the comparison of observed and predicted haplotype homozygosity.Our penalization relies on Sobol's sensitivity indices and is a form of penalty related to the complexity of the model.This penalized model choice criterion allowed us to choose between a population of constant size and a population size with a past change on simulated data sets and also on a cattle data set.
|
4 |
Asymptotic methods for option pricing in finance / Méthodes asymptotiques pour la valorisation d’options en financeKrief, David 27 September 2018 (has links)
Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la valorisation des produits dérivés. Par différentes approches asymptotiques, nous développons des méthodes pour calculer des approximations précises du prix de certains types d’options dans des cas où il n’existe pas de formule explicite.Dans le premier chapitre, nous nous intéressons à la valorisation des options dont le payoff dépend de la trajectoire du sous-jacent par méthodes de Monte-Carlo, lorsque le sous-jacent est modélisé par un processus affine à volatilité stochastique. Nous prouvons un principe de grandes déviations trajectoriel en temps long, que nous utilisons pour calculer, en utilisant le lemme de Varadhan, un changement de mesure asymptotiquement optimal, permettant de réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options.Le second chapitre considère la valorisation par méthodes de Monte-Carlo des options dépendant de plusieurs sous-jacents, telles que les options sur panier, dans le modèle à volatilité stochastique de Wishart, qui généralise le modèle Heston. En suivant la même approche que dans le précédent chapitre, nous prouvons que le processus vérifie un principe de grandes déviations en temps long, que nous utilisons pour réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options, à travers un changement de mesure asymptotiquement optimal. En parallèle, nous utilisons le principe de grandes déviations pour caractériser le comportement en temps long de la volatilité implicite Black-Scholes des options sur panier.Dans le troisième chapitre, nous étudions la valorisation des options sur variance réalisée, lorsque la volatilité spot est modélisée par un processus de diffusion à volatilité constante. Nous utilisons de récents résultats asymptotiques sur les densités des diffusions hypo-elliptiques pour calculer une expansion de la densité de la variance réalisée, que nous intégrons pour obtenir l’expansion du prix des options, puis de leur volatilité implicite Black-Scholes.Le dernier chapitre est consacré à la valorisation des dérivés de taux d’intérêt dans le modèle Lévy de marché Libor qui généralise le modèle de marché Libor classique (log-normal) par l’ajout de sauts. En écrivant le premier comme une perturbation du second et en utilisant la représentation de Feynman-Kac, nous calculons explicitement l’expansion asymptotique du prix des dérivés de taux, en particulier, des caplets et des swaptions. / In this thesis, we study several mathematical finance problems, related to the pricing of derivatives. Using different asymptotic approaches, we develop methods to calculate accurate approximations of the prices of certain types of options in cases where no explicit formulas are available.In the first chapter, we are interested in the pricing of path-dependent options, with Monte-Carlo methods, when the underlying is modelled as an affine stochastic volatility model. We prove a long-time trajectorial large deviations principle. We then combine it with Varadhan’s Lemma to calculate an asymptotically optimal measure change, that allows to reduce significantly the variance of the Monte-Carlo estimator of option prices.The second chapter considers the pricing with Monte-Carlo methods of options that depend on several underlying assets, such as basket options, in the Wishart stochastic volatility model, that generalizes the Heston model. Following the approach of the first chapter, we prove that the process verifies a long-time large deviations principle, that we use to reduce significantly the variance of the Monte-Carlo estimator of option prices, through an asymptotically optimal measure change. In parallel, we use the large deviations property to characterize the long-time behaviour of the Black-Scholes implied volatility of basket options.In the third chapter, we study the pricing of options on realized variance, when the spot volatility is modelled as a diffusion process with constant volatility. We use recent asymptotic results on densities of hypo-elliptic diffusions to calculate an expansion of the density of realized variance, that we integrate to obtain an expansion of option prices and their Black-Scholes implied volatility.The last chapter is dedicated to the pricing of interest rate derivatives in the Levy Libor market model, that generaliszes the classical (log-normal) Libor market model by introducing jumps. Writing the first model as a perturbation of the second and using the Feynman-Kac representation, we calculate explicit expansions of the prices of interest rate derivatives and, in particular, caplets and swaptions
|
5 |
Échantillonnage préférentiel adaptatif et méthodes bayésiennes approchées appliquées à la génétique des populationsSedki, Mohammed 31 October 2012 (has links) (PDF)
Cette thèse propose et étudie deux techniques d'inférence bayésienne dans les modèles où la vraisemblance possède une composante latente. Dans ce contexte, la vraisemblance d'un jeu de données observé est l'intégrale de la vraisemblance dite complète sur l'espace de la variable latente. On s'intéresse aux cas où l'espace de la variable latente est de très grande dimension et comporte des directions de différentes natures (discrètes et continues), ce qui rend cette intégrale incalculable. Le champs d'application privilégié de cette thèse est l'inférence dans les modèles de génétique des populations. Pour mener leurs études, les généticiens des populations se basent sur l'information génétique extraite des populations du présent et représente la variable observée. L'information incluant l'histoire spatiale et temporelle de l'espèce considérée est inaccessible en général et représente la composante latente. Notre première contribution dans cette thèse suppose que la vraisemblance peut être évaluée via une approximation numériquement coûteuse. Le schéma d'échantillonnage préférentiel adaptatif et multiple (AMIS pour Adaptive Multiple Importance Sampling) de Cornuet et al. nécessite peu d'appels au calcul de la vraisemblance et recycle ces évaluations. Cet algorithme approche la loi a posteriori par un système de particules pondérées. Cette technique est conçue pour pouvoir recycler les simulations obtenues par le processus itératif (la construction séquentielle d'une suite de lois d'importance). Dans les nombreux tests numériques effectués sur des modèles de génétique des populations, l'algorithme AMIS a montré des performances numériques très prometteuses en terme de stabilité. Ces propriétés numériques sont particulièrement adéquates pour notre contexte. Toutefois, la question de la convergence des estimateurs obtenus par cette technique reste largement ouverte. Dans cette thèse, nous montrons des résultats de convergence d'une version légèrement modifiée de cet algorithme. Sur des simulations, nous montrons que ses qualités numériques sont identiques à celles du schéma original. Dans la deuxième contribution de cette thèse, on renonce à l'approximation de la vraisemblance et on supposera seulement que la simulation suivant le modèle (suivant la vraisemblance) est possible. Notre apport est un algorithme ABC séquentiel (Approximate Bayesian Computation). Sur les modèles de la génétique des populations, cette méthode peut se révéler lente lorsqu'on vise une approximation précise de la loi a posteriori. L'algorithme que nous proposons est une amélioration de l'algorithme ABC-SMC de Del Moral et al. que nous optimisons en nombre d'appels aux simulations suivant la vraisemblance, et que nous munissons d'un mécanisme de choix de niveaux d'acceptations auto-calibré. Nous implémentons notre algorithme pour inférer les paramètres d'un scénario évolutif réel et complexe de génétique des populations. Nous montrons que pour la même qualité d'approximation, notre algorithme nécessite deux fois moins de simula- tions par rapport à la méthode ABC avec acceptation couramment utilisée.
|
6 |
Position measurement of the superCDMS HVeV detector and implementation of an importance sampling algorithm in the superCDMS simulation softwarePedreros, David S. 03 1900 (has links)
La matière sombre est considérée comme l'un des plus grands mystères dans la cosmologie moderne. En effet, on peut dire que l’on connaît plus sur ce que la matière sombre n'est pas que sur sa vraie nature. La collaboration SuperCDMS travaille sans répit pour réussir à faire la première détection directe de la matière sombre. À cet effet, la collaboration a eu recours à plusieurs expériences et simulations à diverses échelles, pouvant aller de l'usage d'un seul détecteur semi-conducteur, jusqu'à la création d'expériences à grande échelle qui cherchent à faire cette première détection directe de la matière sombre. Dans ce texte, on verra différentes méthodes pour nous aider à mieux comprendre les erreurs systématiques liées à la position du détecteur utilisé dans le cadre des expériences IMPACT@TUNL et IMPACT@MTL, soit l'usage des simulations et de la radiologie industrielle respectivement. On verra aussi comment l'implémentation de la méthode de réduction de variance connue comme échantillonnage préférentiel, peut aider à améliorer l'exécution des simulations de l'expérience à grande échelle planifiée pour le laboratoire canadien SNOLAB. En outre, on verra comment l'échantillonnage préférentiel s'avère utile non seulement pour mieux profiter des ressources disponibles pour la collaboration, mais aussi pour avoir une meilleure compréhension des source de bruits de fond qui seront présentes à SNOLAB, tels que les signaux générés par la désintégration radioactive de divers isotopes. / Dark matter is one of the biggest mysteries of modern-day cosmology. Simply put, we know much more about what it is not, rather than what it actually is. The SuperCDMS collaboration works relentlessly toward making the first direct detection of this type of matter. To this effect, multiple experiments and simulations have been performed, ranging from small-scale testing of the detectors to large-scale, long-term experiments, looking for the actual detection of dark matter. In this work, I will analyze different methods to help understand the systematic errors linked to detector position in regard to the small-scale experiments IMPACT@TUNL and IMPACT@MTL, through simulation and industrial radiography respectively. We will also see how the implementation of the variance reduction method known as importance sampling can be used to improve the simulation performance of the large-scale experiment in the Canadian laboratory SNOLAB. Additionally, we will see how this method can provide not only better management of the computing resources available to the collaboration, but also how it can be used to better the understanding of the background noises, such as the signals generated by radioactive decay of different isotopes, that will be present at SNOLAB.
|
7 |
Analyse de sensibilité fiabiliste avec prise en compte d'incertitudes sur le modèle probabiliste - Application aux systèmes aérospatiaux / Reliability-oriented sensitivity analysis under probabilistic model uncertainty – Application to aerospace systemsChabridon, Vincent 26 November 2018 (has links)
Les systèmes aérospatiaux sont des systèmes complexes dont la fiabilité doit être garantie dès la phase de conception au regard des coûts liés aux dégâts gravissimes qu’engendrerait la moindre défaillance. En outre, la prise en compte des incertitudes influant sur le comportement (incertitudes dites « aléatoires » car liées à la variabilité naturelle de certains phénomènes) et la modélisation de ces systèmes (incertitudes dites « épistémiques » car liées au manque de connaissance et aux choix de modélisation) permet d’estimer la fiabilité de tels systèmes et demeure un enjeu crucial en ingénierie. Ainsi, la quantification des incertitudes et sa méthodologie associée consiste, dans un premier temps, à modéliser puis propager ces incertitudes à travers le modèle numérique considéré comme une « boîte-noire ». Dès lors, le but est d’estimer une quantité d’intérêt fiabiliste telle qu’une probabilité de défaillance. Pour les systèmes hautement fiables, la probabilité de défaillance recherchée est très faible, et peut être très coûteuse à estimer. D’autre part, une analyse de sensibilité de la quantité d’intérêt vis-à-vis des incertitudes en entrée peut être réalisée afin de mieux identifier et hiérarchiser l’influence des différentes sources d’incertitudes. Ainsi, la modélisation probabiliste des variables d’entrée (incertitude épistémique) peut jouer un rôle prépondérant dans la valeur de la probabilité obtenue. Une analyse plus profonde de l’impact de ce type d’incertitude doit être menée afin de donner une plus grande confiance dans la fiabilité estimée. Cette thèse traite de la prise en compte de la méconnaissance du modèle probabiliste des entrées stochastiques du modèle. Dans un cadre probabiliste, un « double niveau » d’incertitudes (aléatoires/épistémiques) doit être modélisé puis propagé à travers l’ensemble des étapes de la méthodologie de quantification des incertitudes. Dans cette thèse, le traitement des incertitudes est effectué dans un cadre bayésien où la méconnaissance sur les paramètres de distribution des variables d‘entrée est caractérisée par une densité a priori. Dans un premier temps, après propagation du double niveau d’incertitudes, la probabilité de défaillance prédictive est utilisée comme mesure de substitution à la probabilité de défaillance classique. Dans un deuxième temps, une analyse de sensibilité locale à base de score functions de cette probabilité de défaillance prédictive vis-à-vis des hyper-paramètres de loi de probabilité des variables d’entrée est proposée. Enfin, une analyse de sensibilité globale à base d’indices de Sobol appliqués à la variable binaire qu’est l’indicatrice de défaillance est réalisée. L’ensemble des méthodes proposées dans cette thèse est appliqué à un cas industriel de retombée d’un étage de lanceur. / Aerospace systems are complex engineering systems for which reliability has to be guaranteed at an early design phase, especially regarding the potential tremendous damage and costs that could be induced by any failure. Moreover, the management of various sources of uncertainties, either impacting the behavior of systems (“aleatory” uncertainty due to natural variability of physical phenomena) and/or their modeling and simulation (“epistemic” uncertainty due to lack of knowledge and modeling choices) is a cornerstone for reliability assessment of those systems. Thus, uncertainty quantification and its underlying methodology consists in several phases. Firstly, one needs to model and propagate uncertainties through the computer model which is considered as a “black-box”. Secondly, a relevant quantity of interest regarding the goal of the study, e.g., a failure probability here, has to be estimated. For highly-safe systems, the failure probability which is sought is very low and may be costly-to-estimate. Thirdly, a sensitivity analysis of the quantity of interest can be set up in order to better identify and rank the influential sources of uncertainties in input. Therefore, the probabilistic modeling of input variables (epistemic uncertainty) might strongly influence the value of the failure probability estimate obtained during the reliability analysis. A deeper investigation about the robustness of the probability estimate regarding such a type of uncertainty has to be conducted. This thesis addresses the problem of taking probabilistic modeling uncertainty of the stochastic inputs into account. Within the probabilistic framework, a “bi-level” input uncertainty has to be modeled and propagated all along the different steps of the uncertainty quantification methodology. In this thesis, the uncertainties are modeled within a Bayesian framework in which the lack of knowledge about the distribution parameters is characterized by the choice of a prior probability density function. During a first phase, after the propagation of the bi-level input uncertainty, the predictive failure probability is estimated and used as the current reliability measure instead of the standard failure probability. Then, during a second phase, a local reliability-oriented sensitivity analysis based on the use of score functions is achieved to study the impact of hyper-parameterization of the prior on the predictive failure probability estimate. Finally, in a last step, a global reliability-oriented sensitivity analysis based on Sobol indices on the indicator function adapted to the bi-level input uncertainty is proposed. All the proposed methodologies are tested and challenged on a representative industrial aerospace test-case simulating the fallout of an expendable space launcher.
|
8 |
Echantillonage d'importance des sources de lumières réalistes / Importance Sampling of Realistic Light SourcesLu, Heqi 27 February 2014 (has links)
On peut atteindre des images réalistes par la simulation du transport lumineuse avec des méthodes de Monte-Carlo. La possibilité d’utiliser des sources de lumière réalistes pour synthétiser les images contribue grandement à leur réalisme physique. Parmi les modèles existants, ceux basés sur des cartes d’environnement ou des champs lumineuse sont attrayants en raison de leur capacité à capter fidèlement les effets de champs lointain et de champs proche, aussi bien que leur possibilité d’être acquis directement. Parce que ces sources lumineuses acquises ont des fréquences arbitraires et sont éventuellement de grande dimension (4D), leur utilisation pour un rendu réaliste conduit à des problèmes de performance.Dans ce manuscrit, je me concentre sur la façon d’équilibrer la précision de la représentation et de l’efficacité de la simulation. Mon travail repose sur la génération des échantillons de haute qualité à partir des sources de lumière par des estimateurs de Monte-Carlo non-biaisés. Dans ce manuscrit, nous présentons trois nouvelles méthodes.La première consiste à générer des échantillons de haute qualité de manière efficace à partir de cartes d’environnement dynamiques (i.e. qui changent au cours du temps). Nous y parvenons en adoptant une approche GPU qui génère des échantillons de lumière grâce à une approximation du facteur de forme et qui combine ces échantillons avec ceux issus de la BRDF pour chaque pixel d’une image. Notre méthode est précise et efficace. En effet, avec seulement 256 échantillons par pixel, nous obtenons des résultats de haute qualité en temps réel pour une résolution de 1024 × 768. La seconde est une stratégie d’échantillonnage adaptatif pour des sources représente comme un "light field". Nous générons des échantillons de haute qualité de manière efficace en limitant de manière conservative la zone d’échantillonnage sans réduire la précision. Avec une mise en oeuvre sur GPU et sans aucun calcul de visibilité, nous obtenons des résultats de haute qualité avec 200 échantillons pour chaque pixel, en temps réel et pour une résolution de 1024×768. Le rendu est encore être interactif, tant que la visibilité est calculée en utilisant notre nouvelle technique de carte d’ombre (shadow map). Nous proposons également une approche totalement non-biaisée en remplaçant le test de visibilité avec une approche CPU. Parce que l’échantillonnage d’importance à base de lumière n’est pas très efficace lorsque le matériau sous-jacent de la géométrie est spéculaire, nous introduisons une nouvelle technique d’équilibrage pour de l’échantillonnage multiple (Multiple Importance Sampling). Cela nous permet de combiner d’autres techniques d’échantillonnage avec le notre basé sur la lumière. En minimisant la variance selon une approximation de second ordre, nous sommes en mesure de trouver une bonne représentation entre les différentes techniques d’échantillonnage sans aucune connaissance préalable. Notre méthode est pertinence, puisque nous réduisons effectivement en moyenne la variance pour toutes nos scènes de test avec différentes sources de lumière, complexités de visibilité et de matériaux. Notre méthode est aussi efficace par le fait que le surcoût de notre approche «boîte noire» est constant et représente 1% du processus de rendu dans son ensemble. / Realistic images can be rendered by simulating light transport with Monte Carlo techniques. The possibility to use realistic light sources for synthesizing images greatly contributes to their physical realism. Among existing models, the ones based on environment maps and light fields are attractive due to their ability to capture faithfully the far-field and near-field effects as well as their possibility of being acquired directly. Since acquired light sources have arbitrary frequencies and possibly high dimension (4D), using such light sources for realistic rendering leads to performance problems.In this thesis, we focus on how to balance the accuracy of the representation and the efficiency of the simulation. Our work relies on generating high quality samples from the input light sources for unbiased Monte Carlo estimation. In this thesis, we introduce three novel methods.The first one is to generate high quality samples efficiently from dynamic environment maps that are changing over time. We achieve this by introducing a GPU approach that generates light samples according to an approximation of the form factor and combines the samples from BRDF sampling for each pixel of a frame. Our method is accurate and efficient. Indeed, with only 256 samples per pixel, we achieve high quality results in real time at 1024 × 768 resolution. The second one is an adaptive sampling strategy for light field light sources (4D), we generate high quality samples efficiently by restricting conservatively the sampling area without reducing accuracy. With a GPU implementation and without any visibility computations, we achieve high quality results with 200 samples per pixel in real time at 1024 × 768 resolution. The performance is still interactive as long as the visibility is computed using our shadow map technique. We also provide a fully unbiased approach by replacing the visibility test with a offline CPU approach. Since light-based importance sampling is not very effective when the underlying material of the geometry is specular, we introduce a new balancing technique for Multiple Importance Sampling. This allows us to combine other sampling techniques with our light-based importance sampling. By minimizing the variance based on a second-order approximation, we are able to find good balancing between different sampling techniques without any prior knowledge. Our method is effective, since we actually reduce in average the variance for all of our test scenes with different light sources, visibility complexity, and materials. Our method is also efficient, by the fact that the overhead of our "black-box" approach is constant and represents 1% of the whole rendering process.
|
9 |
Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabilisteDubourg, Vincent 05 December 2011 (has links) (PDF)
Cette thèse est une contribution à la résolution du problème d'optimisation sous contrainte de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème d'optimisation consiste alors à s'assurer que cette probabilité reste inférieure à un seuil fixé par les donneurs d'ordres. La résolution de ce problème nécessite un grand nombre d'appels à la fonction d'état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s'appuie sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la fonction d'état-limite par un méta-modèle par Krigeage. On s'est particulièrement employé à quantifier, réduire et finalement éliminer l'erreur commise par l'utilisation de ce méta-modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au dimensionnement des coques géométriquement imparfaites soumises au flambement.
|
10 |
Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabiliste / Adaptive surrogate models for reliability analysis and reliability-based design optimizationDubourg, Vincent 05 December 2011 (has links)
Cette thèse est une contribution à la résolution du problème d’optimisation sous contrainte de fiabilité. Cette méthode de dimensionnement probabiliste vise à prendre en compte les incertitudes inhérentes au système à concevoir, en vue de proposer des solutions optimales et sûres. Le niveau de sûreté est quantifié par une probabilité de défaillance. Le problème d’optimisation consiste alors à s’assurer que cette probabilité reste inférieure à un seuil fixé par les donneurs d’ordres. La résolution de ce problème nécessite un grand nombre d’appels à la fonction d’état-limite caractérisant le problème de fiabilité sous-jacent. Ainsi,cette méthodologie devient complexe à appliquer dès lors que le dimensionnement s’appuie sur un modèle numérique coûteux à évaluer (e.g. un modèle aux éléments finis). Dans ce contexte, ce manuscrit propose une stratégie basée sur la substitution adaptative de la fonction d’état-limite par un méta-modèle par Krigeage. On s’est particulièrement employé à quantifier, réduire et finalement éliminer l’erreur commise par l’utilisation de ce méta-modèle en lieu et place du modèle original. La méthodologie proposée est appliquée au dimensionnement des coques géométriquement imparfaites soumises au flambement. / This thesis is a contribution to the resolution of the reliability-based design optimization problem. This probabilistic design approach is aimed at considering the uncertainty attached to the system of interest in order to provide optimal and safe solutions. The safety level is quantified in the form of a probability of failure. Then, the optimization problem consists in ensuring that this failure probability remains less than a threshold specified by the stakeholders. The resolution of this problem requires a high number of calls to the limit-state design function underlying the reliability analysis. Hence it becomes cumbersome when the limit-state function involves an expensive-to-evaluate numerical model (e.g. a finite element model). In this context, this manuscript proposes a surrogate-based strategy where the limit-state function is progressively replaced by a Kriging meta-model. A special interest has been given to quantifying, reducing and eventually eliminating the error introduced by the use of this meta-model instead of the original model. The proposed methodology is applied to the design of geometrically imperfect shells prone to buckling.
|
Page generated in 0.1139 seconds