Spelling suggestions: "subject:"estruturas dde proteínas"" "subject:"estruturas dee proteínas""
11 |
Algoritmos de estimação de distribuição para predição ab initio de estruturas de proteínas / Estimation of distribution algorithms for ab initio protein structure predictionBonetti, Daniel Rodrigo Ferraz 05 March 2015 (has links)
As proteínas são moléculas que desempenham funções essenciais para a vida. Para entender a função de uma proteína é preciso conhecer sua estrutura tridimensional. No entanto, encontrar a estrutura da proteína pode ser um processo caro e demorado, exigindo profissionais altamente qualificados. Neste sentido, métodos computacionais têm sido investigados buscando predizer a estrutura de uma proteína a partir de uma sequência de aminoácidos. Em geral, tais métodos computacionais utilizam conhecimentos de estruturas de proteínas já determinadas por métodos experimentais, para tentar predizer proteínas com estrutura desconhecida. Embora métodos computacionais como, por exemplo, o Rosetta, I-Tasser e Quark tenham apresentado sucesso em suas predições, são apenas capazes de produzir estruturas significativamente semelhantes às já determinadas experimentalmente. Com isso, por utilizarem conhecimento a priori de outras estruturas pode haver certa tendência em suas predições. Buscando elaborar um algoritmo eficiente para Predição de Estruturas de Proteínas livre de tendência foi desenvolvido um Algoritmo de Estimação de Distribuição (EDA) específico para esse problema, com modelagens full-atom e algoritmos ab initio. O fato do algoritmo proposto ser ab initio é mais interessante para aplicação envolvendo proteínas com baixa similaridade, com relação às estruturas já conhecidas. Três tipos de modelos probabilísticos foram desenvolvidos: univariado, bivariado e hierárquico. O univariado trata o aspecto de multi-modalidade de uma variável, o bivariado trata os ângulos diedrais (Φ Ψ) de um mesmo aminoácido como variáveis correlacionadas. O hierárquico divide o problema em subproblemas e tenta tratá-los separadamente. Os resultados desta pesquisa mostraram que é possível obter melhores resultados quando considerado a relação bivariada (Φ Ψ). O hierárquico também mostrou melhorias nos resultados obtidos, principalmente para proteínas com mais de 50 resíduos. Além disso, foi realiza uma comparação com algumas heurísticas da literatura, como: Busca Aleatória, Monte Carlo, Algoritmo Genético e Evolução Diferencial. Os resultados mostraram que mesmo uma metaheurística pouco eficiente, como a Busca Aleatória, pode encontrar a solução correta, porém utilizando muito conhecimento a priori (predição que pode ser tendenciosa). Por outro lado, o algoritmo proposto neste trabalho foi capaz de obter a estrutura da proteína esperada sem utilizar conhecimento a priori, caracterizando uma predição puramente ab initio (livre de tendência). / Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (Φ Ψ) within an amino acid as correlated variables. The hierarchical approach splits the original problem into subproblems and attempts to treat these problems in a separated manner. The experiments show that, indeed, it is possible to achieve better results when modeling the correlation (Φ Ψ). The hierarchical model also showed that is possible to improve the quality of results, mainly for proteins above 50 residues. Besides, we compared our proposed techniques among other metaheuristics from literatures such as: Random Walk, Monte Carlo, Genetic Algorithm and Differential Evolution. The results show that even a less efficient metaheuristic such as Random Walk managed to find the correct structure, however using many prior knowledge (prediction that may be biased). On the other hand, our proposed EDA for PSP was able to find the correct structure with no prior knowledge at all, so we can call this prediction as pure ab initio (biased-free).
|
12 |
ESTUDOS ESTRUTURAIS DA UROCANATO HIDRATASE DE Trypanosoma cruzi POR MÉTODOS EXPERIMENTAIS E COMPUTACIONAISBoreiko, Sheila 26 March 2014 (has links)
Made available in DSpace on 2017-07-24T19:38:13Z (GMT). No. of bitstreams: 1
SHEILA BOREIKO.pdf: 2469578 bytes, checksum: d94618ec9a9eb25acc74ab5a7a6ca5d3 (MD5)
Previous issue date: 2014-03-26 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / Chagas' disease, caused by the protozoan Trypanosoma cruzi, is one of the seventeen neglected diseases according to World Health Organization. In the last two decades, this
parasite specific metabolic pathways have been evaluated as therapeutic targets, making the prospect for the development of more specific and less toxic drugs. To achieve this goal, there is the need for studies to get knowledge on the pathway protein three dimensional structures.Protein structures can be studied experimentally by the X ray diffraction technique and computationally by homology modeling, however, other structural information can also be obtained by spectroscopic techniques. Thus, in this work, structural studies of the enzyme Urocanate Hydratase from Trypanosoma cruzi (TcUH), which participates in the histidine metabolic pathway, were carried out. The enzyme was expressed functionally in E. coli and,by affinity chromatography, effectively purified and crystallized, however, no minimum quality for X-ray diffraction was observed. Thus, we carried out the structural study by circular dichroism (CD), small angle X-ray scattering (SAXS) and homology modeling. The
TcUH is mainly composed of α-helices and its denaturation process by temperature starts near 50 ° C, being irreversible after completed. The SAXS study indicated that the protein in solution was not monomeric. With the homology produced model, docking studies indicated
that some promising molecules to be carefully studied for possible inhibition tests. / A doença de Chagas, causada pelo protozoário Trypanosoma cruzi, é uma das dezessete
doenças negligenciadas de acordo com a Organização Mundial de Saúde. Nas últimas duas décadas, vias metabólicas específicas deste parasita têm sido avaliadas como alvos terapêuticos, o que abre perspectivas para o desenvolvimento de medicamentos mais específicos e menos tóxicos. Para alcançar este objetivo, há a necessidade de estudos para conhecimento da estrutura tridimensional de proteínas que fazem parte destas vias. As estruturas das proteínas podem ser estudadas experimentalmente pela técnica de difração de raios X e computacionalmente pela modelagem por homologia, porém, outras informações estruturais também podem ser obtidas por técnicas espectroscópicas. Sendo assim, realizaramse, neste trabalho, estudos estruturais com a enzima Urocanato Hidratase de Trypanosoma cruzi (TcUH), que participa da via metabólica da histina. A enzima foi expressa em E. coli de forma funcional e, por meio de cromatografia de afinidade, purificada efetivamente e
cristalizada, porém, não apresentou qualidade mínima para análise por difração de raios X. Assim, realizou-se o estudo estrutural por meio de dicroísmo circular (CD), espalhamento de raios X a baixo ângulo (SAXS) e modelagem por homologia. A TcUH é constituída
majoritariamente por hélices-α e seu processo de desnaturação térmica inicia-se próximo a 50 °C, sendo irreversível após completa. O estudo de SAXS indicou que em solução a enzima não se apresenta monomérica. Com o modelo produzido por homologia, que apresentou
razoáveis índices de qualidade, os estudos de docagem indicaram algumas moléculas promissoras que deverão ser estudadas criteriosamente para possíveis testes de inibição.
|
13 |
Algoritmo evolutivo de muitos objetivos para predição ab initio de estrutura de proteínas / Multiobjective evolutionary algorithm with many tables to ab initio protein structure predictionChristiane Regina Soares Brasil 10 May 2012 (has links)
Este trabalho foca o desenvolvimento de algoritmos de otimização para o problema de PSP puramente ab initio. Algoritmos que melhor exploram o espaço de potencial de soluções podem, em geral, encontrar melhores soluções. Esses algoritmos podem beneficiar ambas abordagens de PSP, tanto o modelo ab initio quanto os baseados em conhecimento a priori. Pesquisadores tem mostrado que Algoritmos Evolutivos Multiobjetivo podem contribuir significativamente no contexto do problema de PSP puramente ab initio. Neste contexto, esta pesquisa investiga o Algoritmo Evolutivo Multiobjetivo baseado em Tabelas aplicado ao PSP puramente ab initio, que apresenta interessantes resultados para proteínas relativamente simples. Por exemplo, um desafio para o PSP puramente ab initio é a predição de estruturas com folhas-. Para trabalhar com tais proteínas, foi desenvolvido procedimentos computacionalmente eficientes para estimar energias de ligação de hidrogênio e solvatação. Em geral, estas não são consideradas no PSP por abordagens que combinam métodos de otimização e conhecimento a priori. Considerando somente van der Waals e eletrostática, as duas energias de interação que mais contribuem para a definição da estrutura de uma proteína, com as energias de ligação de hidrogênio e solvatação, o problema de PSP tem quatro objetivos. Problemas combinatórios (tais como o PSP), com mais de três objetivos, geralmente requerem métodos específicos capazes de lidar com muitos critérios. Para resolver essa limitação, este trabalho propõe um novo método para a otimização dos muitos objetivos, chamado Algoritmo Evolutivo Multiobjetivo com Muitas Tabelas (AEMMT). Esse método executa uma amostragem mais adequada do espaço de funções objetivo e, portanto, pode mapear melhor as regiões promissoras deste espaço. A capacidade de lidar com muitos objetivos capacita o AEMMT a utilizar melhor a informação oriunda das energias de solvatação e de ligação de hidrogênio, e então predizer estruturas com folhas- e algumas proteínas relativamente mais complexas. Do ponto de vista computacional, o AEMMT é um novo método que lida com muitos objetivos (mais de dez) encontrando soluções relevantes / This work focuses on the development of optimization algorithms for the purely ab initio Protein Structure Prediction (PSP) problem. Algorithms that better explore the space of potential solutions can in general find better solutions. Such algorithms can benefit both ab initio and template-based PSP, that uses priori knowledge. Researches have shown that Multiobjective evolutionary algorithms can contribute significantly in the context of purely ab initio PSP. In this context, this research investigates the Multiobjective Evolutionary Algorithm based on Tables applied to purely ab initio PSP, which has shown interesting results for relatively simple proteins. For example, one challenge for purely ab initio PSP is the prediction of structures with -sheets. To work with such proteins, this research has developed computationally efficient procedures to estimate hydrogen bond and solvation energies. In general, they are not considered by PSP approaches combining optimization methods with priori knowledge. Only by considering van der Waals and electrostatic, the two interaction energies that mostly contribute to defining a protein structure, and the hydrogen bond and solvation energies, the PSP problem has four objectives. Combinatorial problems (such as the PSP) with more than three objective usually require specific methods capable of dealing with many goals. To address this limitation, we propose a new method for many objective optimization, called Multiobjective Evolutionary Algorithm with Many Tables (MEAMT). This method performs a more adequate sampling of the space of objective functions and, therefore, can better map the promising regions of this space. The ability of dealing with many objectives enables the MEANT to better use information generated by solvation and hydrogen bond energies, and then predict structures with -sheets and some relatively complex proteins. From the computational point of view, the MEAMT is a new method for dealing with many objectives (more than ten) finding relevant solutions
|
14 |
MDAPSP - Uma arquitetura modular distribuída para auxílio à predição de estruturas de proteínas / MDAPSP - A modular distributed architecture to support the protein structure predictionEdvard Martins de Oliveira 09 May 2018 (has links)
A predição de estruturas de proteínas é um campo de pesquisa que busca simular o enovelamento de cadeias de aminoácidos de forma a descobrir as funções das proteínas na natureza, um processo altamente dispendioso por meio de métodos in vivo. Inserida no contexto da Bioinformática, é uma das tarefas mais computacionalmente custosas e desafiadoras da atualidade. Devido à complexidade, muitas pesquisas se utilizam de gateways científicos para disponibilização de ferramentas de execução e análise desses experimentos, aliado ao uso de workflows científicos para organização de tarefas e disponibilização de informações. No entanto, esses gateways podem enfrentar gargalos de desempenho e falhas estruturais, produzindo resultados de baixa qualidade. Para atuar nesse contexto multifacetado e oferecer alternativas para algumas das limitações, esta tese propõe uma arquitetura modular baseada nos conceitos de Service Oriented Architecture (SOA) para oferta de recursos computacionais em gateways científicos, com foco nos experimentos de Protein Structure Prediction (PSP). A Arquitetura Modular Distribuída para auxílio à Predição de Estruturas de Proteínas (MDAPSP) é descrita conceitualmente e validada em um modelo de simulação computacional, no qual se pode identificar suas capacidades, detalhar o funcionamento de seus módulos e destacar seu potencial. A avaliação experimental demonstra a qualidade dos algoritmos propostos, ampliando a capacidade de atendimento de um gateway científico, reduzindo o tempo necessário para experimentos de predição e lançando as bases para o protótipo de uma arquitetura funcional. Os módulos desenvolvidos alcançam boa capacidade de otimização de experimentos de PSP em ambientes distribuídos e constituem uma novidade no modelo de provisionamento de recursos para gateways científicos. / PSP is a scientific process that simulates the folding of amino acid chains to discover the function of a protein in live organisms, considering that its an expensive process to be done by in vivo methods. PSP is a computationally demanding and challenging effort in the Bioinformatics stateof- the-art. Many works use scientific gateways to provide tools for execution and analysis of such experiments, along with scientific workflows to organize tasks and to share information. However, these gateways can suffer performance bottlenecks and structural failures, producing low quality results. With the goal of offering alternatives to some of the limitations and considering the complexity of the topics involved, this thesis proposes a modular architecture based on SOA concepts to provide computing resources to scientific gateways, with focus on PSP experiments. The Modular Distributed Architecture to support Protein Structure Prediction (MDAPSP) is described conceptually and validated in a computer simulation model that explain its capabilities, detail the modules operation and highlight its potential. The performance evaluation presents the quality of the proposed algorithms, a reduction of response time in PSP experiments and prove the benefits of the novel algorithms, establishing the basis for a prototype. The new modules can optmize the PSP experiments in distributed environments and are a innovation in the resource provisioning model for scientific gateways.
|
15 |
Algoritmos de estimação de distribuição para predição ab initio de estruturas de proteínas / Estimation of distribution algorithms for ab initio protein structure predictionDaniel Rodrigo Ferraz Bonetti 05 March 2015 (has links)
As proteínas são moléculas que desempenham funções essenciais para a vida. Para entender a função de uma proteína é preciso conhecer sua estrutura tridimensional. No entanto, encontrar a estrutura da proteína pode ser um processo caro e demorado, exigindo profissionais altamente qualificados. Neste sentido, métodos computacionais têm sido investigados buscando predizer a estrutura de uma proteína a partir de uma sequência de aminoácidos. Em geral, tais métodos computacionais utilizam conhecimentos de estruturas de proteínas já determinadas por métodos experimentais, para tentar predizer proteínas com estrutura desconhecida. Embora métodos computacionais como, por exemplo, o Rosetta, I-Tasser e Quark tenham apresentado sucesso em suas predições, são apenas capazes de produzir estruturas significativamente semelhantes às já determinadas experimentalmente. Com isso, por utilizarem conhecimento a priori de outras estruturas pode haver certa tendência em suas predições. Buscando elaborar um algoritmo eficiente para Predição de Estruturas de Proteínas livre de tendência foi desenvolvido um Algoritmo de Estimação de Distribuição (EDA) específico para esse problema, com modelagens full-atom e algoritmos ab initio. O fato do algoritmo proposto ser ab initio é mais interessante para aplicação envolvendo proteínas com baixa similaridade, com relação às estruturas já conhecidas. Três tipos de modelos probabilísticos foram desenvolvidos: univariado, bivariado e hierárquico. O univariado trata o aspecto de multi-modalidade de uma variável, o bivariado trata os ângulos diedrais (Φ Ψ) de um mesmo aminoácido como variáveis correlacionadas. O hierárquico divide o problema em subproblemas e tenta tratá-los separadamente. Os resultados desta pesquisa mostraram que é possível obter melhores resultados quando considerado a relação bivariada (Φ Ψ). O hierárquico também mostrou melhorias nos resultados obtidos, principalmente para proteínas com mais de 50 resíduos. Além disso, foi realiza uma comparação com algumas heurísticas da literatura, como: Busca Aleatória, Monte Carlo, Algoritmo Genético e Evolução Diferencial. Os resultados mostraram que mesmo uma metaheurística pouco eficiente, como a Busca Aleatória, pode encontrar a solução correta, porém utilizando muito conhecimento a priori (predição que pode ser tendenciosa). Por outro lado, o algoritmo proposto neste trabalho foi capaz de obter a estrutura da proteína esperada sem utilizar conhecimento a priori, caracterizando uma predição puramente ab initio (livre de tendência). / Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (Φ Ψ) within an amino acid as correlated variables. The hierarchical approach splits the original problem into subproblems and attempts to treat these problems in a separated manner. The experiments show that, indeed, it is possible to achieve better results when modeling the correlation (Φ Ψ). The hierarchical model also showed that is possible to improve the quality of results, mainly for proteins above 50 residues. Besides, we compared our proposed techniques among other metaheuristics from literatures such as: Random Walk, Monte Carlo, Genetic Algorithm and Differential Evolution. The results show that even a less efficient metaheuristic such as Random Walk managed to find the correct structure, however using many prior knowledge (prediction that may be biased). On the other hand, our proposed EDA for PSP was able to find the correct structure with no prior knowledge at all, so we can call this prediction as pure ab initio (biased-free).
|
Page generated in 0.1206 seconds